Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(7): 1610-1613, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221722

RESUMO

In this Letter, we reveal a new deflection effect in the reflection of an intense spatiotemporal optical vortex (STOV) beam. When a STOV beam with relativistic intensities (>1018 W cm-2) impacts on an overdense plasma target, the reflected beam deviates from the specular reflection direction in the incident plane. Using two-dimensional (2D) particle-in-cell simulations, we demonstrated that the typical deflection angle is of a few milliradians and can be enhanced by using a stronger STOV beam with tightly focused size and higher topological charge. Though similar to the angular Goos-Hänchen effect, however, it is worth emphasizing that the deviation induced by a STOV beam exists, even in normal incidence, revealing an essentially nonlinear effect. This novel effect is explained from the viewpoint of angular momentum conservation, as well as the Maxwell stress tensor. It is shown that an asymmetrical light pressure of the STOV beam breaks the rotational symmetry of the target surface and leads to nonspecular reflection. Unlike the shear press of an Laguerre-Gaussian beam, which only acts in oblique incidence, the deflection caused by the STOV beam exists more widely, including in normal incidence.

2.
Plant Physiol ; 177(1): 328-338, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29622686

RESUMO

VESICLE-INDUCING PROTEIN IN PLASTID1 (VIPP1) is conserved among oxygenic photosynthetic organisms and appears to have diverged from the bacterial PspA protein. VIPP1 localizes to the chloroplast envelope and thylakoid membrane, where it forms homooligomers of high molecular mass. Although multiple roles of VIPP1 have been inferred, including thylakoid membrane formation, envelope maintenance, membrane fusion, and regulation of photosynthetic activity, its precise role in chloroplast membrane quality control remains unknown. VIPP1 forms an oligomer through its amino-terminal domain and triggers membrane fusion in an Mg2+-dependent manner. We previously demonstrated that Arabidopsis (Arabidopsis thaliana) VIPP1 also exhibits dynamic complex disassembly in response to osmotic and heat stresses in vivo. These results suggest that VIPP1 mediates membrane fusion/remodeling in chloroplasts. Considering that protein machines that regulate intracellular membrane fusion/remodeling events often require a capacity for GTP binding and/or hydrolysis, we questioned whether VIPP1 has similar properties. We conducted an in vitro assay using a purified VIPP1-His fusion protein expressed in Escherichia coli cells. VIPP1-His showed GTP hydrolysis activity that was inhibited competitively by an unhydrolyzable GTP analog, GTPγS, and that depends on GTP binding. It is particularly interesting that the ancestral PspA from E. coli also possesses GTP hydrolysis activity. Although VIPP1 does not contain a canonical G domain, the amino-terminal α-helix was found to be important for both GTP binding and GTP hydrolysis as well as for oligomer formation. Collectively, our results reveal that the properties of VIPP1/PspA are similar to those of GTPases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Choque Térmico/metabolismo , Hidrólise , Proteínas de Membrana/química , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes de Fusão/metabolismo
3.
Plant Physiol ; 171(3): 1983-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208228

RESUMO

Integrity of biomembranes is vital to living organisms. In bacteria, PspA is considered to act as repairing damaged membrane by forming large supercomplexes in Arabidopsis (Arabidopsis thaliana). Vulnerable to oxidative stress, photosynthetic organisms also contain a PspA ortholog called VIPP1, which has an additional C-terminal tail (Vc). In this study, Vc was shown to coincide with an intrinsically disordered region, and the role of VIPP1 in membrane protection against stress was investigated. We visualized VIPP1 by fusing it to GFP (VIPP1-GFP that fully complemented lethal vipp1 mutations), and investigated its behavior in vivo with live imaging. The intrinsically disordered nature of Vc enabled VIPP1 to form what appeared to be functional particles along envelopes, whereas the deletion of Vc caused excessive association of the VIPP1 particles, preventing their active movement for membrane protection. Expression of VIPP1 lacking Vc complemented vipp1 mutation, but exhibited sensitivity to heat shock stress. Conversely, transgenic plants over-expressing VIPP1 showed enhanced tolerance against heat shock, suggesting that Vc negatively regulates VIPP1 particle association and acts in maintaining membrane integrity. Our data thus indicate that VIPP1 is involved in the maintenance of photosynthetic membranes. During evolution, chloroplasts have acquired enhanced tolerance against membrane stress by incorporating a disordered C-terminal tail into VIPP1.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Resposta ao Choque Térmico/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Tilacoides/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Membrana/genética , Plantas Geneticamente Modificadas
4.
Biochim Biophys Acta ; 1847(9): 831-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25725437

RESUMO

A protein designated as VIPP1 is found widely in organisms performing oxygenic photosynthesis, but its precise role in chloroplasts has remained somewhat mysterious. Based on its structural similarity, it presumably has evolved from bacterial Phage shock protein A (PspA) with a C-terminal extension of approximately 40 amino acids. Both VIPP1 and PspA are membrane-associated despite the lack of transmembrane helices. They form an extremely large homo-complex that consists of an oligomeric ring unit. Although PspA is known to respond to membrane stress and although it acts in maintaining proton motive force through membrane repair, the multiple function of VIPP1, such as vesicle budding from inner envelope to deliver lipids to thylakoids, maintenance of photosynthetic complexes in thylakoid membranes, biogenesis of Photosystem I, and protective role of inner envelope against osmotic stress, has been proposed. Whatever its precise function in chloroplasts, it is an important protein because depletion of VIPP1 in mutants severely affects photoautotrophic growth. Recent reports of the relevant literature describe that VIPP1 becomes highly mobile when chloroplasts receive hypotonic stress, and that VIPP1 is tightly bound to lipids, which implies a crucial role of VIPP1 in membrane repair through lipid transfer. This review presents a summary of our current knowledge related to VIPP1, particularly addressing the dynamic behavior of complexes against stress and its property of lipid binding. Those data altogether suggest that VIPP1 acts a priori in chloroplast membrane maintenance through its activity to transfer lipids rather than in thylakoid formation through vesicles. This article is part of a Special Issue titled: Chloroplast Biogenesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas de Bactérias/fisiologia , Cloroplastos/fisiologia , Proteínas de Membrana/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Membrana/química , Dados de Sequência Molecular
5.
Phys Rev Lett ; 117(11): 113904, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661689

RESUMO

An interesting deflection effect deviating the optical reflection law is revealed in the relativistic regime of intense vortex laser plasma interaction. When an intense vortex laser obliquely impinges onto an overdense plasma target, the reflected beam deflects out of the plane of incidence with an experimentally observable deflection angle. The mechanism is demonstrated by full three-dimensional particle-in-cell simulation as well as analytical modeling using the Maxwell stress tensor. The deflection results from the rotational symmetry breaking of the foil driven by the unsymmetrical shear stress of the vortex beam. The l-dependent shear stress, where l is the topological charge, as an intrinsic characteristic to the vortex beam, plays an important role as the ponderomotive force in relativistic vortex laser matter interaction.

6.
Plant Cell ; 24(9): 3695-707, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23001039

RESUMO

VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), proposed to play a role in thylakoid biogenesis, is conserved in photosynthetic organisms and is closely related to Phage Shock Protein A (PspA), which is involved in plasma membrane integrity in Escherichia coli. This study showed that chloroplasts/plastids in Arabidopsis thaliana vipp1 knockdown and knockout mutants exhibit a unique morphology, forming balloon-like structures. This altered morphology, as well as lethality of vipp1, was complemented by expression of VIPP1 fused to green fluorescent protein (VIPP1-GFP). Several lines of evidence show that the balloon chloroplasts result from chloroplast swelling related to osmotic stress, implicating VIPP1 in the maintenance of plastid envelopes. In support of this, Arabidopsis VIPP1 rescued defective proton leakage in an E. coli pspA mutant. Microscopy observation of VIPP1-GFP in transgenic Arabidopsis revealed that VIPP1 forms large macrostructures that are integrated into various morphologies along the envelopes. Furthermore, live imaging revealed that VIPP1-GFP is highly mobile when chloroplasts are subjected to osmotic stress. VIPP1-GFP showed dynamic movement in the transparent area of spherical chloroplasts, as the fluorescent molecules formed filament-like structures likely derived from disassembly of the large VIPP1 complex. Collectively, our data demonstrate that VIPP1 is a multifunctional protein in chloroplasts that is critically important for envelope maintenance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/ultraestrutura , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cloroplastos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Potenciais da Membrana , Proteínas de Membrana/genética , Dados de Sequência Molecular , Complexos Multiproteicos , Mutação , Osmose , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Proteínas Recombinantes de Fusão , Estresse Fisiológico , Tilacoides/metabolismo , Tilacoides/ultraestrutura
7.
Phys Rev Lett ; 114(17): 173901, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978234

RESUMO

This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

8.
Plant Cell ; 23(4): 1608-24, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21521697

RESUMO

In plant cells, mitochondria and plastids contain their own genomes derived from the ancestral bacteria endosymbiont. Despite their limited genetic capacity, these multicopy organelle genomes account for a substantial fraction of total cellular DNA, raising the question of whether organelle DNA quantity is controlled spatially or temporally. In this study, we genetically dissected the organelle DNA decrease in pollen, a phenomenon that appears to be common in most angiosperm species. By staining mature pollen grains with fluorescent DNA dye, we screened Arabidopsis thaliana for mutants in which extrachromosomal DNAs had accumulated. Such a recessive mutant, termed defective in pollen organelle DNA degradation1 (dpd1), showing elevated levels of DNAs in both plastids and mitochondria, was isolated and characterized. DPD1 encodes a protein belonging to the exonuclease family, whose homologs appear to be found in angiosperms. Indeed, DPD1 has Mg²âº-dependent exonuclease activity when expressed as a fusion protein and when assayed in vitro and is highly active in developing pollen. Consistent with the dpd phenotype, DPD1 is dual-targeted to plastids and mitochondria. Therefore, we provide evidence of active organelle DNA degradation in the angiosperm male gametophyte, primarily independent of maternal inheritance; the biological function of organellar DNA degradation in pollen is currently unclear.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , DNA de Plantas/metabolismo , Exonucleases/metabolismo , Exorribonucleases/metabolismo , Magnésio/metabolismo , Organelas/genética , Pólen/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Clonagem Molecular , Sequência Conservada/genética , DNA de Cloroplastos/metabolismo , DNA Mitocondrial/metabolismo , Exorribonucleases/genética , Genes de Plantas/genética , Teste de Complementação Genética , Germinação , Padrões de Herança/genética , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Mitocôndrias/metabolismo , Proteínas Mutantes/isolamento & purificação , Mutação/genética , Especificidade de Órgãos , Fenótipo , Plastídeos/metabolismo , Pólen/citologia , Pólen/metabolismo , Pólen/ultraestrutura , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Reprodução
9.
Phys Rev Lett ; 112(23): 235001, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972214

RESUMO

When a relativistic laser pulse with a high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or "light fan." Because of its structure, the latter can gain significant orbital angular momentum (OAM), and the opposite OAM is imparted to the reflected light, creating a twisted relativistic light pulse. Such an interaction scenario is demonstrated by particle-in-cell simulation as well as analytical modeling, and should be easily verifiable in the laboratory. As an important characteristic, the twisted relativistic light pulse has a strong torque and ultrahigh OAM density.

10.
Plant Cell ; 22(11): 3710-25, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21062893

RESUMO

FtsH is an ATP-dependent metalloprotease present as a hexameric heterocomplex in thylakoid membranes. Encoded in the Arabidopsis thaliana YELLOW VARIEGATED2 (VAR2) locus, FtsH2 is one isoform among major Type A (FtsH1/5) and Type B (FtsH2/8) isomers. Mutants lacking FtsH2 (var2) and FtsH5 (var1) are characterized by a typical leaf-variegated phenotype. The functional importance of the catalytic center (comprised by the zinc binding domain) in FtsH2 was assessed in this study by generating transgenic plants that ectopically expressed FtsH2(488), a proteolytically inactive version of FtsH2. The resulting amino acid substitution inhibited FtsH protease activity in vivo when introduced into Escherichia coli FtsH. By contrast, expression of FtsH2(488) rescued not only leaf variegation in var2 but also seedling lethality in var2 ftsh8, suggesting that the protease activity of Type B isomers is completely dispensable, which implies that the chloroplastic FtsH complex has protease sites in excess and that they act redundantly rather than coordinately. However, expression of FtsH2(488) did not fully rescue leaf variegation in var1 var2 because the overall FtsH levels were reduced under this background. Applying an inducible promoter to our complementation analysis revealed that rescue of leaf variegation indeed depends on the overall amount of FtsH. Our results elucidate protein activity and its amount as important factors for the function of FtsH heterocomplexes that are composed of multiple isoforms in the thylakoid membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Cloroplastos/fisiologia , Isoenzimas/metabolismo , Metaloproteases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Membranas Intracelulares/metabolismo , Isoenzimas/genética , Metaloproteases/genética , Mutagênese Sítio-Dirigida , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Tilacoides/ultraestrutura
11.
Front Plant Sci ; 14: 1157145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346123

RESUMO

Intraorganismal genetic heterogeneity (IGH) exists when an individual organism harbors more than one genotype among its cells. In general, intercellular DNA diversity occurs at a very low frequency and cannot be directly detected by DNA sequencing from bulk tissue. In this study, based on Sanger and high-throughput sequencing, different species, different organs, different DNA segments and a single cell were employed to characterize nucleotide mutations in Leymus chinensis. The results demonstrated that 1) the nuclear DNA showed excessive genetic heterogeneity among cells of an individual leaf or seed but the chloroplast genes remained consistent; 2) a high density of SNPs was found in the variants of the unique DNA sequence, and the similar SNP profile shared between the leaf and seed suggested that nucleotide mutation followed a certain rule and was not random; and 3) the mutation rate decreased from the genomic DNA sequence to the corresponding protein sequence. Our results suggested that Leymus chinensis seemed to consist of a collection of cells with different genetic backgrounds.

12.
Int J Biol Macromol ; 223(Pt A): 378-390, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36368355

RESUMO

In this study, the synergistic effects of black onion on the hypolipidemic and antioxidant activities in T2DM rats induced by a high-fat-diet and alloxan were investigated. The results showed that the fasting blood glucose of diabetic rats was significantly decreased after treatment with black onion polysaccharide (p < 0.01). Blood lipid analysis indicated that black onion polysaccharide could significantly improve the abnormal metabolism of blood lipids caused by diabetes. In addition, the MDA and ROS of the diabetic rats treated with black onion polysaccharide were significantly reduced; moreover, SOD was increased, indicating the excellent antioxidant activity of black onion polysaccharide. A histological examination clearly showed that black onion polysaccharide could improve the histological morphology of the liver and kidney. Furthermore, the indices of liver and kidney function were restored. These results indicate that black onion polysaccharide can reduce blood glucose and simultaneously show synergistic effects of hypoglycemic and antioxidant activities in diabetic rats. Therefore, black onion polysaccharide may alleviate liver and kidney function injury by improving the "two-hit" mechanism and can thus be used as a potential functional food to prevent diabetes and its complications.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Ratos , Animais , Antioxidantes/metabolismo , Cebolas , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/efeitos adversos , Fígado , Polissacarídeos/efeitos adversos , Rim , Lipídeos
13.
Front Plant Sci ; 13: 949578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903241

RESUMO

Vesicle-inducing protein in plastid 1 (VIPP1), characteristic to oxygenic photosynthetic organisms, is a membrane-remodeling factor that forms homo-oligomers and functions in thylakoid membrane formation and maintenance. The cyanobacterial VIPP1 structure revealed a monomeric folding pattern similar to that of endosomal sorting complex required for transport (ESCRT) III. Characteristic to VIPP1, however, is its own GTP and ATP hydrolytic activity without canonical domains. In this study, we found that histidine-tagged Arabidopsis VIPP1 (AtVIPP1) hydrolyzed GTP and ATP to produce GDP and ADP in vitro, respectively. Unexpectedly, the observed GTPase and ATPase activities were biochemically distinguishable, because the ATPase was optimized for alkaline conditions and dependent on Ca2+ as well as Mg2+, with a higher affinity for ATP than GTP. We found that a version of AtVIPP1 protein with a mutation in its nucleotide-binding site, as deduced from the cyanobacterial structure, retained its hydrolytic activity, suggesting that Arabidopsis and cyanobacterial VIPP1s have different properties. Negative staining particle analysis showed that AtVIPP1 formed particle or rod structures that differed from those of cyanobacteria and Chlamydomonas. These results suggested that the nucleotide hydrolytic activity and oligomer formation of VIPP1 are common in photosynthetic organisms, whereas their properties differ among species.

14.
J Integr Plant Biol ; 53(11): 846-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21981015

RESUMO

Leaf variegation resulting from nuclear gene mutations has been used as a model system to elucidate the molecular mechanisms of chloroplast development. Since most variegation genes also function in photosynthesis, it remains unknown whether their roles in photosynthesis and chloroplast development are distinct. Here, using the variegation mutant thylakoid formation1 (thf1) we show that variegation formation is light independent. It was found that slow and uneven chloroplast development in thf1 can be attributed to defects in etioplast development in darkness. Ultrastructural analysis showed the coexistence of plastids with or without prolamellar bodies (PLB) in cells of thf1, but not of WT. Although THF1 mutation leads to significant decreases in the levels of Pchlide and Pchllide oxidoreductase (POR) expression, genetic and 5-aminolevulinic acid (ALA)-feeding analysis did not reveal Pchlide or POR to be critical factors for etioplast formation in thf1. Northern blot analysis showed that plastid gene expression is dramatically reduced in thf1 compared with that in WT, particularly in the dark. Our results also indicate that chlorophyll biosynthesis and expression of plastidic genes are coordinately suppressed in thf1. Based on these results, we propose a model to explain leaf variegation formation from the plastid development perspective.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Northern Blotting , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo
15.
Front Plant Sci ; 12: 708672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335670

RESUMO

We previously reported the involvement of cyclic nucleotide-gated ion channel 6 (CNGC6) and hydrogen peroxide (H2O2) in plant responses to heat shock (HS). To demonstrate their relationship with plant thermotolerance, we assessed the effect of HS on several groups of Arabidopsis (Arabidopsis thaliana) seedlings: wild-type, cngc6 mutant, and its complementation line. Under exposure to HS, the level of H2O2 was lower in the cngc6 mutant seedlings than in the wild-type (WT) seedlings but obviously increased in the complementation line. The treatment of Arabidopsis seeds with calcium ions (Ca2+) increased the H2O2 levels in the seedlings under HS treatment, whereas treatment with a Ca2+ chelator (EGTA) inhibited it, indicating that CNGC6 may stimulate the accumulation of H2O2 in a manner dependent on an increase in cytosolic Ca2+ ([Ca2+]cyt). This point was verified by phenotypic observations and thermotolerance testing with transgenic plants overexpressing AtRbohB and AtRbohD (two genes involved in HS-responsive H2O2 production), respectively, in a cngc6 background. Real-time reverse transcription-polymerase chain reactions and Western blotting suggested that CNGC6 enhanced the gene transcription of HS factors (HSFs) and the accumulation of HS proteins (HSPs) via H2O2. These upon results indicate that H2O2 acts downstream of CNGC6 in the HS signaling pathway, increasing our understanding of the initiation of plants responses to high temperatures.

16.
Plant J ; 58(6): 1041-53, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19228339

RESUMO

Heterotrimeric G protein knock-out mutants have no phenotypic defect in chloroplast development, and the connection between the G protein signaling pathway and chloroplast development has only been inferred from pharmaceutical evidence. Thus, whether G protein signaling plays a role in chloroplast development remains an open question. Here, we present genetic evidence, using the leaf-variegated mutant thylakoid formation 1 (thf1), indicating that inactivation or activation of the endogenous G protein alpha-subunit (GPA1) affects chloroplast development, as does the ectopic expression of the constitutively active Galpha-subunit (cGPA1). Molecular biological and genetic analyses showed that FtsH complexes, which are composed of type-A (FtsH1/FtsH5) and type-B (FtsH2/FtsH8) subunits, are required for cGPA1-promoted chloroplast development in thf1. Furthermore, the ectopic expression of cGPA1 rescues the leaf variegation of ftsh2. Consistent with this finding, microarray analysis shows that ectopic expression of cGPA1 partially corrects mis-regulated gene expression in thf1. This overlooked function of G proteins provides new insight into our understanding of the integrative signaling network, which dynamically regulates chloroplast development and function in response to both intracellular and extracellular signals.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Proteases Dependentes de ATP/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/ultraestrutura , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética
17.
J Integr Plant Biol ; 52(5): 496-504, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20537045

RESUMO

Recent identification of NYE1/SGR1 brought up a new era for the exploration of the regulatory mechanism of Chlorophyll (Chl) degradation. Cluster analysis of senescence associated genes with putative chloroplast targeting sequences revealed several genes sharing a similar expression pattern with NYE1. Further characterization of available T-DNA insertion lines led to the discovery of a novel stay-green gene CRN1 (Co-regulated with NYE1). Chl breakdown was significantly restrained in crn1-1 under diversified senescence scenarios, which is comparable with that in acd1-20, but much more severe than that in nye1-1. Notably, various Chl binding proteins, especially trimeric LHCP II, were markedly retained in crn1-1 four days after dark-treatment, possibly due to a lesion in disassociation of protein-pigment complex. Nevertheless, the photochemical efficiency of PSII in crn1-1 declined, even more rapidly, two days after dark-treatment, compared to those in Col-0 and nye1-1. Our results suggest that CRN1 plays a crucial role in Chl degradation, and that loss of its function produces various side-effects, including those on the breakdown of Ch-protein complex and the maintenance of the residual photosynthetic capability during leaf senescence.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Clorofila/metabolismo , Testes Genéticos/métodos , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Senescência Celular , Análise por Conglomerados , Escuridão , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Fotossíntese , Pigmentação/genética , Estabilidade Proteica
18.
Dev Biol ; 324(1): 68-75, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18834874

RESUMO

Stomata are essential for efficient gas and water-vapor exchange between the atmosphere and plants. Stomatal density and movement are controlled by a series of signal molecules including phytohormones and peptides as well as by environmental stimuli. It is known that heterotrimeric G-proteins play an important role in the ABA-inhibited stomatal opening. In this study, the G-protein signaling pathway was also found to regulate stomatal density on the lower epidermis of Arabidopsis cotyledons. The loss-of-function mutation of the G-protein alpha-subunit (GPA1) showed a reduction in stomatal density, while overexpression of the constitutively active form of GPA1(QL) increased stomatal density, indicating a positive role of the active form of GPA1 in stomatal development. In contrast, stomatal density increased in the null mutant of the G-protein beta-subunit (AGB1) but decreased in transgenic lines that overexpressed AGB1. Stomatal analysis of the gpa1 agb1 double mutants displayed an average value of stomatal density compared to the single mutants. Taken together, these results suggest that the stomatal density in Arabidopsis is modulated by GPA1 and AGB1 in an antagonistic manner.


Assuntos
Arabidopsis/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Estômatos de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Mutação , Transdução de Sinais
19.
Phys Rev E ; 100(4-1): 043202, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770946

RESUMO

We investigate the precession of electron spins during beam-driven plasma-wakefield acceleration based on density down-ramp injection by means of full three-dimensional (3D) particle-in-cell (PIC) simulations. A relativistic electron beam generated via, e.g., laser wakefield acceleration, serves as the driving source. It traverses the prepolarized gas target and accelerates polarized electrons via the excited wakefield. We derive the criteria for the driving beam parameters and the limitation on the injected beam flux to preserve a high degree of polarization for the accelerated electrons, which are confirmed by our 3D PIC simulations and single-particle modeling. The electron-beam driver is free of the prepulse issue associated with a laser driver, thus eliminating possible depolarization of the prepolarized gas due to ionization by the prepulse. These results provide guidance for future experiments towards generating a source of polarized electrons based on wakefield acceleration.

20.
Sci Rep ; 8(1): 2669, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422516

RESUMO

Extreme-ultravoilet (XUV) attosecond pulses with durations of a few tens of attosecond have been successfully applied for exploring ultrafast electron dynamics at the atomic scale. But their weak intensities limit the further application in demonstrating nonlinear responses of inner-shell electrons. Optical attosecond pulses will provide sufficient photon flux to initiate strong-field processes. Here we proposed a novel method to generate an ultra-intense isolated optical attosecond pulse through relativistic multi-cycle laser pulse interacting with a designed gas-foil target. The underdense gas target sharpens the multi-cycle laser pulse, producing a dense layer of relativistic electrons with a thickness of a few hundred nanometers. When the dense electron layer passes through an oblique foil, it emits single ultra-intense half-cycle attosecond pulse in the visible and ultraviolet spectral range. The emitted pulse has a peak intensity exceeding 1018 W/cm2 and full-width-half-maximum duration of 200 as. The peak power of this attosecond light source reaches 2 terawatt. The proposed method relaxes the single-cycle requirement on the driving pulse for isolated attosecond pulse generation and significantly boosts the peak power, thus it may open up the route to new experiments tracking the nonlinear response of inner-shell electrons as well as nonlinear attosecond phenomena investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA