Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2400912, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530048

RESUMO

Gels show great promise for applications in wearable electronics, biomedical devices, and energy storage systems due to their exceptional stretchability and adjustable electrical conductivity. However, the challenge lies in integrating multiple functions like elasticity, instantaneous self-healing, and a wide operating temperature range into a single gel. To address this issue, a hybrid hydrogen bonding strategy to construct gel with these desirable properties is proposed. The intricate network of hybrid strong weak hydrogen bonds within the polymer matrix enables these ionohydrogel to exhibit remarkable instantaneous self-healing, stretching up to five times their original length within seconds. Leveraging these properties, the incorporation of ionic liquids, water, and zinc salts into hybrid hydrogen bond crosslinked network enables conductivity and redox reaction, making it a versatile ionic skin for real-time monitoring of human movements and respiratory. Moreover, the ionohydrogel can be used as electrolyte in the assembly of a zinc-ion battery, ensuring a reliable power supply for wearable electronics, even in extreme conditions (-20 °C and extreme deformations). This ionohydrogel electrolyte simplifies the diverse structural requirements of gels to meet the needs of various electronic applications, offering a new approach for multi-functional electronics.

2.
Acc Chem Res ; 56(21): 2907-2920, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37819099

RESUMO

ConspectusElastomers have been extensively used in diverse industrial sectors such as footwear, seals, tires, and cable jacketing and have attracted more and more attention in emerging fields such as regenerative medicine, soft robotics, and stretchable electronics. Global consumption of natural and synthetic elastomers amounted to nearly 27 million metric tons in 2020. In addition, to further enhance the common properties of elastomers, it is highly desired to endow elastomers with functionalities such as reprocessability, biomimetic mechanical properties, self-healing ability, bioactivity, and electrical conductivity, which will significantly broaden their applications. The covalent or noncovalent cross-linked structure is the essential factor for the elasticity of elastomers. Traditional elastomers usually comprise a single type of cross-linked molecular network, for which it is difficult to modulate the properties and introduce functionalities. Inspired by the simultaneous existence of multiple cross-linked structures in proteins, researchers have employed a hybrid cross-linking strategy to construct elastomers. Various noncovalent interactions (e.g., hydrogen bonds, metal-ligand coordination, ionic interactions, and chain folding) and dynamic covalent bonds (e.g., disulfide bonds, oxime-urethane bonds, and urea bonds) have been integrated in elastomers. Accordingly, the properties and functionalities of elastomers can be tuned by regulating the types, ratios, and distributions of cross-links. The hybrid cross-linking strategy provides a versatile and effective way to construct diverse functional elastomers for broad applications in various important fields.In this Account, we present our recent progress on functional elastomers constructed by a hybrid cross-linking strategy, including their design, preparation, properties, and diverse applications. First, we provide a brief introduction of the basic concept of functional elastomers and outline general strategies and mechanics for functional elastomers constructed by hybrid cross-linking. Then, we classify hybrid cross-linked elastomers by their design strategies, including multiple cross-linking, topological design, chemical coupling, and multiple networks. The relationships between the functionalities and hybrid cross-linked structures are summarized. At the same time, we also introduce diverse applications of these hybrid cross-linked elastomers in biomedicine, flexible electronics, soft robotics, 3D printing, and so on. Finally, we discuss our perspective on open challenges and future development trends of this rapidly evolving field. This Account highlighting the diverse hybrid cross-linked elastomers not only provides insights into strategies for elastomer functionalization but also provides new ideas for material design and inspires a variety of new applications.

3.
Adv Sci (Weinh) ; 11(3): e2305697, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997206

RESUMO

As stretchable conductive materials, ionogels have gained increasing attention. However, it still remains crucial to integrate multiple functions including mechanically robust, room temperature self-healing capacity, facile processing, and recyclability into an ionogel-based device with high potential for applications such as soft robots, electronic skins, and wearable electronics. Herein, inspired by the structure of spider silk, a multilevel hydrogen bonding strategy to effectively produce multi-functional ionogels is proposed with a combination of the desirable properties. The ionogels are synthesized based on N-isopropylacrylamide (NIPAM), N, N-dimethylacrylamide (DMA), and ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). The synergistic hydrogen bonding interactions between PNIPAM chains, PDMA chains, and ILs endow the ionogels with improved mechanical strength along with fast self-healing ability at ambient conditions. Furthermore, the synthesized ionogels show great capability for the continuous fabrication of the ionogel-based fibers using the melt-spinning process. The ionogel fibers exhibit spider-silk-like features with hysteresis behavior, indicating their excellent energy dissipation performance. Moreover, an interwoven network of ionogel fibers with strain and thermal sensing performance can accurately sense the location of objects. In addition, the ionogels show great recyclability and processability into different shapes using 3D printing. This work provides a new strategy to design superior ionogels for diverse applications.

4.
Sci Bull (Beijing) ; 69(12): 1875-1886, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38616151

RESUMO

There is usually a trade-off between high mechanical strength and dynamic self-healing because the mechanisms of these properties are mutually exclusive. Herein, we design and fabricate a fluorinated phenolic polyurethane (FPPU) elastomer based on octafluoro-4,4'-biphenol to overcome this challenge. This fluorine-based motif not only tunes interchain interactions through π-π stacking between aromatic rings and free-volume among polymer chains but also improves the reversibility of phenol-carbamate bonds via electron-withdrawing effect of fluorine atoms. The developed FPPU elastomer shows the highest recorded puncture energy (648.0 mJ), high tensile strength (27.0 MPa), as well as excellent self-healing efficiency (92.3%), along with low surface energy (50.9 MJ m-2), notch-insensitivity, and reprocessability compared with non-fluorinated counterpart biphenolic polyurethane (BPPU) elastomer. Taking advantage of the above-mentioned merits of FPPU elastomer, we prepare an anti-fouling triboelectric nanogenerator (TENG) with a self-healable, and reprocessable elastic substrate. Benefiting from stronger electron affinity of fluorine atoms than hydrogen atoms, this electronic device exhibits ultrahigh peak open-circuit voltage of 302.3 V compared to the TENG fabricated from BPPU elastomer. Furthermore, a healable and stretchable conductive composite is prepared. This research provides a distinct and general pathway toward constructing high-performance elastomers and will enable a series of new applications.

5.
Adv Mater ; 36(13): e2310020, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100738

RESUMO

Stretchable conductive fibers play key roles in electronic textiles, which have substantial improvements in terms of flexibility, breathability, and comfort. Compared to most existing electron-conductive fibers, ion-conductive fibers are usually soft, stretchable, and transparent, leading to increasing attention. However, the integration of desirable functions including high transparency, stretchability, conductivity, solvent resistance, self-healing ability, processability, and recyclability remains a challenge to be addressed. Herein, a new molecular strategy based on dynamic covalent cross-linking networks is developed to enable continuous melt spinning of the ionogel fiber with the aforementioned properties. As a proof of concept, adaptable covalently cross-linked ionogel fibers based on dimethylglyoximeurethane (DOU) groups (DOU-IG fiber) are prepared. The resultant DOU-IG fiber exhibited high transparency (>93%), tensile strength (0.76 MPa), stretchability (784%), and solvent resistance. Owing to the dynamic of DOU groups, the DOU-IG fiber shows high healing performance using near-infrared light. Taking advantage of DOU-IG fibers, multifunctional ionotronics with the integration of several desirable functionalities including sensor, triboelectric nanogenerator, and electroluminescent display are fabricated and used for motion monitoring, energy harvesting, and human-machine interaction. It is believed that these DOU-IG fibers are promising for fabricating the next generation of electronic textiles and other wearable electronics.

6.
Adv Mater ; 36(16): e2313761, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211632

RESUMO

Soft robots have the potential to assist and complement human exploration of extreme and harsh environments (i.e., organic solvents). However, soft robots with stable performance in diverse organic solvents are not developed yet. In the current research, a non-Euclidean-plate under-liquid soft robot inspired by jellyfish based on phototropic liquid crystal elastomers is fabricated via a 4D-programmable strategy. Specifically, the robot employs a 3D-printed non-Euclidean-plate, designed with Archimedean orientation, which undergoes autonomous deformation to release internal stress when immersed in organic solvents. With the assistance of near-infrared light illumination, the organic solvent inside the robot vaporizes and generates propulsion in the form of bubble streams. The developed NEP-Jelly-inspired soft robot can swim with a high degree of freedom in various organic solvents, for example, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dichloromethane, and trichloromethane, which is not reported before. Besides bionic jellyfish, various aquatic invertebrate-inspired soft robots can potentially be prepared via a similar 4D-programmable strategy.

7.
Nat Commun ; 14(1): 2218, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072415

RESUMO

Fibers, with over 100 million tons produced each year, have been widely used in various areas. Recent efforts have focused on improving mechanical properties and chemical resistance of fibers via covalent cross-linking. However, the covalently cross-linked polymers are usually insoluble and infusible, and thus fiber fabrication is difficult. Those reported require complex multiple-step preparation processes. Herein, we present a facile and effective strategy to prepare adaptable covalently cross-linked fibers by direct melt spinning of covalent adaptable networks (CANs). At processing temperature, dynamic covalent bonds are reversibly dissociated/associated and the CANs are temporarily disconnected to enable melt spinning; at the service temperature, the dynamic covalent bonds are frozen, and the CANs exhibit favorable structural stability. We demonstrate the efficiency of this strategy via dynamic oxime-urethane based CANs, and successfully prepare adaptable covalently cross-linked fibers with robust mechanical properties (maximum elongation of 2639%, tensile strength of 87.68 MPa, almost complete recovery from an elongation of 800%) and solvent resistance. Application of this technology is demonstrated by an organic solvent resistant and stretchable conductive fiber.

8.
ACS Nano ; 16(10): 16954-16965, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36125071

RESUMO

Self-powered information encoding devices (IEDs) have drawn considerable interest owing to their capability to process information without batteries. Next-generation IEDs should be reprogrammable, self-healing, and wearable to satisfy the emerging requirements for multifunctional IEDs; however, such devices have not been demonstrated. Herein, an integrated triboelectric nanogenerator-based IED with the aforementioned features was developed based on the designed light-responsive high-permittivity poly(sebacoyl diglyceride-co-4,4'-azodibenzoyl diglyceride) elastomer (PSeDAE) with a triple-shape-memory effect. The electrical memory feature was achieved through a microscale shape-memory property, enabling spatiotemporal information reprogramming for the IED. Macroscale shape-memory behavior afforded the IED shape-reprogramming ability, yielding wearable and detachable features. The dynamic transesterifications and light-heating groups in the PSeDAE afforded a remotely controlled rearrangement of its cross-linking network, producing the self-healing IED.


Assuntos
Elastômeros , Dispositivos Eletrônicos Vestíveis , Diglicerídeos , Fontes de Energia Elétrica
9.
Natl Sci Rev ; 8(5): nwaa154, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691631

RESUMO

Elastomers are essential for stretchable electronics, which have become more and more important in bio-integrated devices. To ensure high compliance with the application environment, elastomers are expected to resist, and even self-repair, mechanical damage, while being friendly to the human body. Herein, inspired by peptidoglycan, we designed the first room-temperature autonomous self-healing biodegradable and biocompatible elastomers, poly(sebacoyl 1,6-hexamethylenedicarbamate diglyceride) (PSeHCD) elastomers. The unique structure including alternating ester-urethane moieties and bionic hybrid crosslinking endowed PSeHCD elastomers superior properties including ultrafast self-healing, tunable biomimetic mechanical properties, facile reprocessability, as well as good biocompatibility and biodegradability. The potential of the PSeHCD elastomers was demonstrated as a super-fast self-healing stretchable conductor (21 s) and motion sensor (2 min). This work provides a new design and synthetic principle of elastomers for applications in bio-integrated electronics.

10.
Nat Commun ; 12(1): 4395, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285224

RESUMO

The unique properties of self-healing materials hold great potential in the field of biomedical engineering. Although previous studies have focused on the design and synthesis of self-healing materials, their application in in vivo settings remains limited. Here, we design a series of biodegradable and biocompatible self-healing elastomers (SHEs) with tunable mechanical properties, and apply them to various disease models in vivo, in order to test their reparative potential in multiple tissues and at physiological conditions. We validate the effectiveness of SHEs as promising therapies for aortic aneurysm, nerve coaptation and bone immobilization in three animal models. The data presented here support the translation potential of SHEs in diverse settings, and pave the way for the development of self-healing materials in clinical contexts.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/uso terapêutico , Engenharia Biomédica , Poliuretanos/uso terapêutico , Animais , Aneurisma Aórtico/cirurgia , Materiais Biocompatíveis/química , Modelos Animais de Doenças , Elastômeros/química , Fixação de Fratura/métodos , Fraturas Ósseas/cirurgia , Humanos , Masculino , Teste de Materiais , Camundongos , Transferência de Nervo/métodos , Traumatismos dos Nervos Periféricos/cirurgia , Poliuretanos/química , Ratos , Suínos , Porco Miniatura
11.
Adv Mater ; 32(8): e1906994, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31957099

RESUMO

Stretchable conductive fibers are key elements for next-generation flexible electronics. Most existing conductive fibers are electron-based, opaque, relatively rigid, and show a significant increase in resistance during stretching. Accordingly, soft, stretchable, and transparent ion-conductive hydrogel fibers have attracted significant attention. However, hydrogel fibers are difficult to manufacture and easy to dry and freeze, which significantly hinders their wide range of applications. Herein, organohydrogel fibers are designed to address these challenges. First, a newly designed hybrid crosslinking strategy continuously wet-spins hydrogel fibers, which are transformed into organohydrogel fibers by simple solvent replacement. The organohydrogel fibers show excellent antifreezing (< -80 °C) capability, stability (>5 months), transparency, and stretchability. The predominantly covalently crosslinked network ensures the fibers have a high dynamic mechanical stability with negligible hysteresis and creep, from which previous conductive fibers usually suffer. Accordingly, strain sensors made from the organohydrogel fibers accurately capture high-frequency (4 Hz) and high-speed (24 cm s-1 ) motion and exhibit little drift for 1000 stretch-release cycles, and are powerful for detecting rapid cyclic motions such as engine valves and are difficult to reach by previously reported conductive fibers. The organohydrogel fibers also demonstrate potential as wearable anisotropic sensors, data gloves, soft electrodes, and optical fibers.

12.
Research (Wash D C) ; 2019: 2389254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31922131

RESUMO

To achieve the dynamical dual-pattern with multiplex information of complex topography and 3D fluorescence is challenging yet promising for wide applications ranging from visual bioassays, memory, smart devices to smart display. Here, we develop a convenient, reliable, and versatile method to realize the well-ordered dual-pattern with reversible topography and 3D fluorescence via a light direct-writing approach based on the wrinkle mechanism. By introducing the charge transfer (CT) interaction between π-electron-rich anthracene (AN) and π-electron-poor naphthalene diimide (NDI) into the polymer system, both modulus and fluorescence of the polymer films can be spatially regulated through the photodimerization of AN, which is controlled in-plane by photomasks, and becomes gradient in the vertical direction due to the filter effect of light. Therefore, the exposed sample displays a well-ordered complex pattern with the same topography as the applied photomask and 3D gradient change of fluorescence from red to green laterally across the layers simultaneously. The spatial cross-linking and CT interaction of the gradient layer can be controlled independently, which not only provides the reliability and reversibility of the topographical and fluorescence dual-pattern but also endows the possibility for tailoring the pattern with memory and self-healing. These characters of the dual-pattern with reversible topography and 3D fluorescence declare the clear applications in smart multiplex displays, memory, anticounterfeiting, visual detections, and so on.

13.
Adv Mater ; 31(23): e1901402, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30977571

RESUMO

It is highly desirable, although very challenging, to develop self-healable materials exhibiting both high efficiency in self-healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)-dimethylglyoxime-urethane-complex-based polyurethane elastomer (Cu-DOU-CPU) with synergetic triple dynamic bonds is developed. Cu-DOU-CPU demonstrates the highest reported mechanical performance for self-healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m-3 , respectively. Meanwhile, the Cu-DOU-CPU spontaneously self-heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime-urethane, which is important to the excellent performance of the self-healing elastomer. Application of this technology is demonstrated by a self-healable and stretchable circuit constructed from Cu-DOU-CPU.

14.
ACS Macro Lett ; 7(5): 540-545, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632928

RESUMO

The reversible surface patterns with fluorescence and topography can possibly enable information recording and reading and provide an important alternative to realize the higher information security. We demonstrated a reversible dual-pattern with simultaneously responsive fluorescence and topography using an anthracene (AN) and naphthalene diimide (NDI) containing copolymer (PAN-NDI-BA) as the skin layer, in which the reversible photodimerization of AN can simultaneously control the cross-linking and CT interaction between AN and NDI. Upon irradiation with UV light and thermal treatment, the resulting pattern assumes a reversible change between smooth and wrinkled states, and its fluorescence changes reversibly from red to white to blue-green. The smart surfaces with dynamic hierarchical wrinkles and fluorescence were achieved by selective irradiation with photomasks and can be employed for potential applications in smart displays and anticounterfeiting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA