Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Blood ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39158067

RESUMO

Menin inhibitors that disrupt Menin-MLL interaction hold promise for treating specific acute myeloid leukemia subtypes, including KMT2A rearrangements (KMT2A-r), yet resistance remains a challenge. Here, through systematic chromatin-focused CRISPR screens, along with genetic, epigenetic, and pharmacologic studies in a variety of human and mouse KMT2A-r AML models, we uncover a potential resistance mechanism independent of canonical Menin-MLL targets. We show that a group of non-canonical Menin targets, which are bivalently co-occupied by active Menin and repressive H2AK119ub marks, are typically downregulated following Menin inhibition. The loss of Polycomb Repressive Complex 1.1 (PRC1.1) subunits, such as PCGF1 or BCOR, leads to Menin inhibitor resistance by epigenetic reactivation of these non-canonical targets, including MYC. Genetic and pharmacological inhibition of MYC can resensitize PRC1.1-deficent leukemia cells to Menin inhibition. Moreover, we demonstrate that leukemia cells with the loss of PRC1.1 subunits exhibit reduced monocytic gene signatures and are susceptible to the BCL2 inhibition, and combinational treatment of venetoclax overcomes the resistance to Menin inhibition in PRC1.1-deficient leukemia cells. These findings highlight the important roles of PRC1.1 and its regulated non-canonical Menin targets in modulating Menin inhibitor response and provide potential strategies to treat leukemias with compromised PRC1.1 function.

2.
Proc Natl Acad Sci U S A ; 120(1): e2214897120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574702

RESUMO

During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.


Assuntos
Células Cromafins , Vesículas de Núcleo Denso , Camundongos , Animais , Sinaptotagminas/metabolismo , Exocitose/fisiologia , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Vesículas Secretórias/metabolismo , Fusão de Membrana/fisiologia , Cálcio/metabolismo
3.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833839

RESUMO

Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Repetições de Microssatélites , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Redes Neurais de Computação , DNA/metabolismo , RNA/metabolismo , Microambiente Tumoral , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
4.
Plant Physiol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351808

RESUMO

Coat protein complex II (COPII) vesicles play crucial roles in mediating the endoplasmic reticulum (ER) exit of newly synthesized proteins to the Golgi in eukaryotic cells. However, the molecular functions of COPII components and their functional diversifications in plant seeds remain obscure. Here, we showed that the rice (Oryza sativa) glutelin precursor accumulation12 (gpa12) mutant is defective in storage protein export from the ER, resulting in the formation of aggregated protein bodies. Map-based cloning revealed that GPA12 encodes a COPII outer layer protein, Sec13a, that mainly localizes to endoplasmic reticulum exit sites (ERES) and partially localizes to the Golgi. Biochemical experiments verified that Sec13a physically interacts with Sec31 and Sec16, and mutation in Sec13 compromises its interaction with Sec31 and Sec16, thereby affecting the membrane association of the inner complex components Sar1b and Sec23c. Apart from Sec13a, the rice genome encodes two other Sec13 isoforms, Sec13b and Sec13c. Notably, we observed an abnormal accumulation of globular ER structures in the sec13bc double mutant but not in the single mutants, suggesting a functional redundancy of Sec13b and Sec13c in modulating ER morphology. Taken together, our results substantiated that Sec13a plays an important role in regulating storage protein export from the ER, while Sec13b and Sec13c are required for maintaining ER morphology in rice endosperm cells. Our findings provide insights into the functional diversification of COPII components in plants.

5.
Nano Lett ; 24(35): 11043-11050, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39162252

RESUMO

Coupled nanomechanical resonators have unveiled fascinating physical phenomena, including phonon-cavity coupling, coupled energy decay pathway, avoided crossing, and internal resonance. Despite these discoveries, the mechanisms and control techniques of nonlinear mode coupling phenomena with internal resonances require further exploration. Here, we report on the observation of stochastic switching between the two resonance states with coupled 1:1 internal resonance, for resonant two-dimensional (2D) molybdenum disulfide (MoS2) nanoelectromechanical systems (NEMS), which is directly driven to the critical coupling regime without parametric pumping. We further demonstrate that the probability of state switching is linearly tunable from ∼0% to ∼100% by varying the driving voltage. Furthermore, we gradually increase the white noise amplitude and show that the probability of obtaining the higher-energy state decreases, and the stochastic switching phenomenon eventually disappears. The results provide insights into the dynamics of coupled NEMS resonators and open up new possibilities for sensing and stochastic computing.

6.
J Cell Mol Med ; 28(20): e70152, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39434201

RESUMO

The apelin receptor (APJ) is a key player in tumour angiogenesis, but its role in hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of the apelin/APJ pathway in HCC using a multi-omics approach and identify potential therapeutic biomarkers. Differentially expressed genes related to the apelin/APJ axis were identified from bulk transcriptomics to reveal HCC-associated disparities. Single-cell and spatial transcriptomics were used to localize and analyse the function of these genes. Machine learning models were constructed to predict outcomes based on apelin/APJ expression, and experimental validation was conducted to explore the pathway's impact on HCC angiogenesis. Single cell analysis revealed an overexpression of APJ/Aplin in the endothelium. The stemness of endothelial cell (EC) with high apelin/APJ was enhanced, as well as the expression of TGFb, oxidative stresses and PI3K/AKT pathway genes. Spatial transcriptomics confirmed that EC populations with high APJ scores were enriched within the tumour. Machine learning models showed high prognostic accuracy. High APJ expression was linked to worse outcomes (p = 0.001), and AUC values were high (1 year, 3 year, 5 year) (0.95, 0.97, 0.98). Immune suppression and non-responsiveness of immune therapy were also seen in high-risk groups. The experimental validation showed that silencing apelin reduced angiogenesis (p < 0.05), endothelial proliferation, decreased expression of ANG2, KLF2, VEGFA and lower ERK1/2 phosphorylation. Apelin may serve as a potential therapeutic target in HCC, given its role in promoting tumour angiogenesis and poor patient outcomes.


Assuntos
Receptores de Apelina , Apelina , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Neovascularização Patológica , Transcriptoma , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/irrigação sanguínea , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/irrigação sanguínea , Humanos , Receptores de Apelina/metabolismo , Receptores de Apelina/genética , Apelina/genética , Apelina/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Análise de Célula Única , Transdução de Sinais , Microvasos/patologia , Microvasos/metabolismo , Perfilação da Expressão Gênica , Progressão da Doença , Prognóstico , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino
7.
Plant Physiol ; 193(4): 2788-2805, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37725401

RESUMO

High temperature induces stomatal opening; however, uncontrolled stomatal opening is dangerous for plants in response to high temperature. We identified a high-temperature sensitive (hts) mutant from the ethyl methane sulfonate (EMS)-induced maize (Zea mays) mutant library that is linked to a single base change in MITOGEN-ACTIVATED PROTEIN KINASE 20 (ZmMPK20). Our data demonstrated that hts mutants exhibit substantially increased stomatal opening and water loss rate, as well as decreased thermotolerance, compared to wild-type plants under high temperature. ZmMPK20-knockout mutants showed similar phenotypes as hts mutants. Overexpression of ZmMPK20 decreased stomatal apertures, water loss rate, and enhanced plant thermotolerance. Additional experiments showed that ZmMPK20 interacts with MAP KINASE KINASE 9 (ZmMKK9) and E3 ubiquitin ligase RPM1 INTERACTING PROTEIN 2 (ZmRIN2), a maize homolog of Arabidopsis (Arabidopsis thaliana) RIN2. ZmMPK20 prevented ZmRIN2 degradation by inhibiting ZmRIN2 self-ubiquitination. ZmMKK9 phosphorylated ZmMPK20 and enhanced the inhibitory effect of ZmMPK20 on ZmRIN2 degradation. Moreover, we employed virus-induced gene silencing (VIGS) to silence ZmMKK9 and ZmRIN2 in maize and heterologously overexpressed ZmMKK9 or ZmRIN2 in Arabidopsis. Our findings demonstrated that ZmMKK9 and ZmRIN2 play negative regulatory roles in high-temperature-induced stomatal opening. Accordingly, we propose that the ZmMKK9-ZmMPK20-ZmRIN2 cascade negatively regulates high-temperature-induced stomatal opening and balances water loss and leaf temperature, thus enhancing plant thermotolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Temperatura , Estômatos de Plantas/fisiologia , Água/metabolismo
8.
Biomacromolecules ; 25(4): 2222-2242, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38437161

RESUMO

Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.


Assuntos
Sondas Moleculares , Peptídeos , Peptídeos/química , Diagnóstico por Imagem/métodos , Biomarcadores
9.
Biomacromolecules ; 25(5): 2953-2964, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652682

RESUMO

Endoscopic submucosal dissection (ESD) is an effective method for resecting early-stage tumors in the digestive system. To achieve a low injection pressure of the injected fluid and continuous elevation of the mucosa following injection during the ESD technique, we introduced an innovative injectable sodium-alginate-based drug-loaded microsphere (Cipro-ThSA) for ESD surgery, which was generated through an emulsion reaction involving cysteine-modified sodium alginate (ThSA) and ciprofloxacin. Cipro-ThSA microspheres exhibited notable adhesiveness, antioxidant activity, and antimicrobial properties, providing a certain level of postoperative wound protection. In vitro cell assays confirmed the decent biocompatibility of the material. Lastly, according to animal experiments involving submucosal elevation of porcine colons, Cipro-ThSA microspheres ensure surgically removable lift height while maintaining the mucosa for approximately 246% longer than saline, which could effectively reduce surgical risks while providing sufficient time for operation. Consequently, the Cipro-ThSA microsphere holds great promise as a novel submucosal injection material, in terms of enhancing the operational safety and effectiveness of ESD surgery.


Assuntos
Alginatos , Ressecção Endoscópica de Mucosa , Microesferas , Alginatos/química , Animais , Suínos , Ressecção Endoscópica de Mucosa/métodos , Humanos , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Cisteína/química
10.
J Sep Sci ; 47(14): e2400065, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054584

RESUMO

A novel zwitterionic polymer grafted silica stationary phase, Sil-PZIC, was prepared by bonding poly(ethylene maleic anhydride) molecules on the surface of silica via multiple binding sites, followed by ammonolysis of maleic anhydride through a nucleophilic substitution reaction with ethylenediamine. The stationary phase was characterized by solid-state 13C nuclear magnetic resonance, zeta potential, and elemental analysis and the results show the successful encapsulation of zwitterionic polymer on the surface of silica. The chromatographic performance of Sil-PZIC was investigated by using nucleosides and nucleic bases as test analytes The variation of retention and separation performance of these model compounds were investigated by varying the chromatographic conditions such as the components of mobile phase, salt concentration, and pH. The results show that the retention of the Sil-PZIC phase was dominated by a hydrophilic partitioning mechanism accompanied by secondary interactions such as electrostatic and hydrogen bonding. In addition, saccharides and Amadori compounds were also well separated on the Sil-PZIC, indicating that the Sil-PZIC column has potential application for separation of the polar compound.

11.
BMC Urol ; 24(1): 101, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689249

RESUMO

BACKGROUND: To introduce the surgical technique and our team's extensive experience with tunnel method in laparoscopic adrenalectomy. METHODS: From July 2019 to June 2022, we independently designed and conducted 83 cases of " Tunnel Method Laparoscopic Adrenalectomy," a prospective study. There were 45 male and 38 female patients, ages ranged from 25 to 73 years(mean: 44.6 years).The cases included 59 adrenal cortical adenomas, 9 pheochromocytomas, 6 cysts, 4 myelolipomas, 1 ganglioneuroma, and 4 cases of adrenal cortical hyperplasia. In terms of anatomical location, there were 39 cases on the left side, 42 on the right side, and 2 bilateral cases. Tumor diameters ranged from 0.6 to 5.9 cm(mean: 2.9 cm). Utilizing ultrasound monitoring, percutaneous puncture was made either directly to the target organ or its vicinity, and the puncture path was manually marked. Then, under the direct view of a single-port single-channel laparoscope, the path to the target organ in the retroperitoneum or its vicinity was further delineated and separated. This approach allowed for the insertion of the laparoscope and surgical instruments through the affected adrenal gland, thereby separating the surface of the target organ to create sufficient operational space for the adrenalectomy. RESULTS: All 83 surgeries were successfully completed. A breakdown of the surgical approach reveals that 51 surgeries were done using one puncture hole, 25 with two puncture holes, and 7 with three puncture holes. The operation time ranged from 31 to 105 min (mean: 47 min), with a blood loss of 10 to 220mL (mean: 40 mL). Notably, there were no conversions to open surgery and no intraoperative complications. Postoperative follow-up ranged from 6 to 28 months, during which after re-examination using ultrasound, CT, and other imaging methods, there were no recurrences or other complications detected. CONCLUSIONS: The completion of the tunnel method laparoscopic adrenalectomy represents a breakthrough, transitioning from the traditional step-by-step separation of retroperitoneal tissues to reach the target organ in conventional retroperitoneoscopic surgery. This method directly accesses the target organ, substantially reducing the damage and complications associated with tissue separation in retroperitoneoscopic surgery, As a result, it provides a new option for minimally invasive surgery of retroperitoneal organs and introduces innovative concepts to retroperitoneoscopic surgery.


Assuntos
Adrenalectomia , Laparoscopia , Humanos , Adrenalectomia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Laparoscopia/métodos , Adulto , Idoso , Espaço Retroperitoneal/cirurgia , Neoplasias das Glândulas Suprarrenais/cirurgia , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem
12.
BMC Ophthalmol ; 24(1): 70, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360631

RESUMO

BACKGROUND: Studies on the factors affecting vault after posterior chamber phakic Implantable Collamer Lens (ICL) have been carried out, but most of them are single-centered and subjective selections of parameters. The present study aimed to systematically analyze the factors for vault. METHODS: A systematic review of case series, case-control, and cohort studies derived from the articles published in PubMed, the Cochrane Library, Embase, Web of Science, CNKI, CBM, Wanfang and VIP, as well as ClinicalTrials, which were conducted to search for studies on factors of vault using four core terms: phakic intraocular lenses, vault, risk factor and observational study, from January 01, 1997, to February 20, 2023. The included studies were meta-analyzed quantitatively and described qualitatively. Subsequently, meta-regression and subgroup analysis were used. RESULTS: We identified 13 studies (1,607 subjects), and 14 factors were considered. Meta-analysis showed that anterior chamber depth (ACD), horizontal corneal white-to-white (hWTW), ICL-size, and age are dual effects of the abnormal vaults; anterior chamber volume (ACV) and lens thickness (LT) are a one-way effect; while axial length (AL), ICL- spherical equivalent (ICL-SE) and Km are insignificant. In addition, descriptive analysis of anterior chamber angle (ACA), horizontal sulcus to sulcus (hSTS), ciliary processes height (T value), crystalline lens rise (CLR), and gender showed that all factors except gender tend to have significant effects on vault. Sensitivity analysis showed stable combined results. Country and design respectively affect the heterogeneity in ACD and ICL-size at low vault, while design affects the heterogeneity in ACD at high vault. No publication bias exists. CONCLUSIONS: Vault after ICL is related to multiple factors, especially anterior segmental biologic parameters, and they are weighted differently. We hope to provide a reference for the selection and adjustment of ICL.


Assuntos
Câmara Anterior , Miopia , Lentes Intraoculares Fácicas , Humanos , Miopia/cirurgia , Miopia/fisiopatologia , Implante de Lente Intraocular/métodos , Fatores de Risco , Acuidade Visual/fisiologia , Comprimento Axial do Olho/patologia
13.
Adv Exp Med Biol ; 1459: 379-403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017853

RESUMO

Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.


Assuntos
Fatores de Transcrição MEF2 , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Humanos , Animais , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proliferação de Células/genética
14.
Pestic Biochem Physiol ; 201: 105862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685239

RESUMO

Phomopsis longicolla, a causal agent of soybean root rot, stem blight, seed decay, pod and stem canker, which seriously affects the yield and quality of soybean production worldwide. The phenylpyrrole fungicide fludioxonil exhibits a broad spectrum and high activity against phytopathogenic fungi. In this study, the baseline sensitivity of 100 P. longicolla isolates collected from the main soybean production areas of China to fludioxonil were determined. The result showed that the EC50 values of all the P. longicolla isolates ranged from 0.013 to 0.035 µg/ml. Furthermore, 12 fludioxonil-resistance (FluR) mutants of P. longicolla were generated from 6 fludioxonil-sensitive (FluS) isolates. and the resistance factors (RF) of 12 FluR mutants were >3500. Sequence alignment showed that multiple mutation types were found in PlOS1, PlOS4 or/and PlOS5 of FluR mutants. All the FluR mutants exhibited fitness penalty in mycelial growth, conidiation, virulence and osmo-adaptation. Under fludioxonil or NaCl treatment condition, the glycerol accumulation was significantly increased in FluS isolates, but was slightly increased in FluR mutants, and the phosphorylation level of most FluR mutants was significantly decreased when compared to the FluS isolates. Additionally, positive cross-resistance was observed between fludioxonil and procymidone but not fludioxonil and pydiflumetofen, pyraclostrobin or fluazinam. This is first reported that the baseline sensitivity of P. longicolla to fludioxonil, as well as the biological and molecular characterizations of P. longicolla FluR mutants to fludioxonil. These results can provide scientific directions for controlling soybean diseases caused by P. longicolla using fludioxonil.


Assuntos
Ascomicetos , Dioxóis , Farmacorresistência Fúngica , Fungicidas Industriais , Pirróis , Pirróis/farmacologia , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Dioxóis/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/metabolismo , Mutação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Glycine max/microbiologia , Glycine max/efeitos dos fármacos
15.
Nano Lett ; 23(20): 9375-9382, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37788247

RESUMO

In resonant nanoelectromechanical systems (NEMS), the quality (Q) factor is essential for sensing, communication, and computing applications. While a large vibrational amplitude is useful for increasing the signal-to-noise ratio, the damping in this regime is more complex because both linear and nonlinear damping are important, and an accurate model for Q has not been fully explored. Here, we demonstrate that by combining the time-domain ringdown and frequency-domain resonance measurements, we extract the accurate Q for two-dimensional (2D) MoS2 and MoTe2 NEMS resonators at different vibration amplitudes. In particular, in the transition region between linear and nonlinear damping, Q can be precisely extracted by fitting to the ringdown characteristics. By varying AC driving, we tune the Q by ΔQ/Q = 269% and extract the nonlinear damping coefficient. We develop the dissipation model that well captures the linear to nonlinear damping, providing important insights for accurately modeling and optimizing Q in 2D NEMS resonators.

16.
J Xray Sci Technol ; 32(3): 493-512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189738

RESUMO

In the medical field, computed tomography (CT) is a commonly used examination method, but the radiation generated increases the risk of illness in patients. Therefore, low-dose scanning schemes have attracted attention, in which noise reduction is essential. We propose a purposeful and interpretable decomposition iterative network (DISN) for low-dose CT denoising. This method aims to make the network design interpretable and improve the fidelity of details, rather than blindly designing or using deep CNN architecture. The experiment is trained and tested on multiple data sets. The results show that the DISN method can restore the low-dose CT image structure and improve the diagnostic performance when the image details are limited. Compared with other algorithms, DISN has better quantitative and visual performance, and has potential clinical application prospects.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Doses de Radiação , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Imagens de Fantasmas
17.
J Xray Sci Technol ; 32(4): 1061-1077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669513

RESUMO

BACKGROUND: Recently, X-rays have been widely used to detect complex structural workpieces. Due to the uneven thickness of the workpiece and the high dynamic range of the X-ray image itself, the detailed internal structure of the workpiece cannot be clearly displayed. OBJECTIVE: To solve this problem, we propose an image enhancement algorithm based on a multi-scale local edge-preserving filter. METHODS: Firstly, the global brightness of the image is enhanced through logarithmic transformation. Then, to enhance the local contrast, we propose utilizing the gradient decay function based on fuzzy entropy to process the gradient and then incorporate the gradient into the energy function of the local edge-preserving filter (LEP) as a constraint term. Finally, multiple base layers and detail layers are obtained through filtering multi-scale decomposition. All detail layers are enhanced and fused using S-curve mapping to improve contrast further. RESULTS: This method is competitive in both quantitative indices and visual perception quality. CONCLUSIONS: The experimental results demonstrate that the proposed method significantly enhances various complex workpieces and is highly efficient.


Assuntos
Algoritmos , Entropia , Lógica Fuzzy , Processamento de Imagem Assistida por Computador/métodos , Intensificação de Imagem Radiográfica/métodos , Humanos
18.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469200

RESUMO

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Assuntos
Oryza , Proteínas de Armazenamento de Sementes , Proteínas de Armazenamento de Sementes/metabolismo , Oryza/genética , Transporte Proteico/genética , Glutens/genética , Retículo Endoplasmático/metabolismo
19.
Bioinformatics ; 38(16): 4027-4029, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35771644

RESUMO

SUMMARY: Characterizing biomarkers based on microbiome profiles has great potential for translational medicine and precision medicine. Here, we present microbiomeMarker, an R/Bioconductor package implementing commonly used normalization and differential analysis (DA) methods, and three supervised learning models to identify microbiome markers. microbiomeMarker also allows comparison of different methods of DA and confounder analysis. It uses standardized input and output formats, which renders it highly scalable and extensible, and allows it to seamlessly interface with other microbiome packages and tools. In addition, the package provides a set of functions to visualize and interpret the identified microbiome markers. AVAILABILITY AND IMPLEMENTATION: microbiomeMarker is freely available from Bioconductor (https://www.bioconductor.org/packages/microbiomeMarker). Source code is available and maintained at GitHub (https://github.com/yiluheihei/microbiomeMarker). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbiota , Software , Biomarcadores
20.
Plant Cell ; 32(3): 758-777, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949008

RESUMO

Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.


Assuntos
Complexo de Golgi/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Endosperma/metabolismo , Glutens/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/química , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas de Armazenamento de Sementes/química , Vacúolos/metabolismo , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA