Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2302234120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399391

RESUMO

The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-structure-based titanium matrix composites (TMCs) that achieve 12.0% elongation comparable to the matrix Ti6Al4V alloys and enhanced strength compared to homostructure composites. The proposed dual-structure comprises a primary structure, namely, a TiB whisker-rich region engendered fine grain Ti6Al4V matrix with a three-dimensional micropellet architecture (3D-MPA), and an overall structure consisting of evenly distributed 3D-MPA "reinforcements" and a TiBw-lean titanium matrix. The dual structure presents a spatially heterogeneous grain distribution with 5.8 µm fine grains and 42.3 µm coarse grains, which exhibits excellent hetero-deformation-induced (HDI) hardening and achieves a 5.8% ductility. Interestingly, the 3D-MPA "reinforcements" show 11.1% isotropic deformability and 66% dislocation storage, which endows the TMCs with good strength and loss-free ductility. Our enlightening method uses an interdiffusion and self-organization strategy based on powder metallurgy to enable metal matrix composites with the heterostructure of the matrix and the configuration of reinforcement to address the strength-ductility trade-off dilemma.

2.
Gut ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955400

RESUMO

OBJECTIVE: Gut microbiome composition is associated with multiple diseases, but relatively little is known about its relationship with long-term outcome measures. While gut dysbiosis has been linked to mortality risk in the general population, the relationship with overall survival in specific diseases has not been extensively studied. In the current study, we present results from an in-depth analysis of the relationship between gut dysbiosis and all-cause and cause-specific mortality in the setting of solid organ transplant recipients (SOTR). DESIGN: We analysed 1337 metagenomes derived from faecal samples of 766 kidney, 334 liver, 170 lung and 67 heart transplant recipients part of the TransplantLines Biobank and Cohort-a prospective cohort study including extensive phenotype data with 6.5 years of follow-up. To analyze gut dysbiosis, we included an additional 8208 metagenomes from the general population of the same geographical area (northern Netherlands). Multivariable Cox regression and a machine learning algorithm were used to analyse the association between multiple indicators of gut dysbiosis, including individual species abundances, and all-cause and cause-specific mortality. RESULTS: We identified two patterns representing overall microbiome community variation that were associated with both all-cause and cause-specific mortality. The gut microbiome distance between each transplantation recipient to the average of the general population was associated with all-cause mortality and death from infection, malignancy and cardiovascular disease. A multivariable Cox regression on individual species abundances identified 23 bacterial species that were associated with all-cause mortality, and by applying a machine learning algorithm, we identified a balance (a type of log-ratio) consisting of 19 out of the 23 species that were associated with all-cause mortality. CONCLUSION: Gut dysbiosis is consistently associated with mortality in SOTR. Our results support the observations that gut dysbiosis is associated with long-term survival. Since our data do not allow us to infer causality, more preclinical research is needed to understand mechanisms before we can determine whether gut microbiome-directed therapies may be designed to improve long-term outcomes.

3.
BMC Plant Biol ; 24(1): 23, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166728

RESUMO

BACKGROUND: Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS: In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS: The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.


Assuntos
Genoma de Cloroplastos , Genomas de Plastídeos , Rosaceae , Spiraea , Filogenia , Evolução Molecular , Genoma de Cloroplastos/genética
4.
Sensors (Basel) ; 24(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203137

RESUMO

Structural health monitoring (SHM) of fatigue cracks is essential for ensuring the safe operation of engineering equipment. The acoustic emission (AE) technique is one of the SHM techniques that is capable of monitoring fatigue-crack growth (FCG) in real time. In this study, fatigue-damage evolution of Hadfield steel was characterized using acoustic emission (AE) and machine learning-based methods. The AE signals generated from the entire fatigue-load process were acquired and correlated with fatigue-damage evolution. The AE-source mechanisms were discussed based on waveform characteristics and bispectrum analysis. Moreover, multiple machine learning algorithms were used to classify fatigue sub-stages, and the results show the effectiveness of classification of fatigue sub-stages using machine learning algorithms. The novelty of this research lies in the use of machine learning algorithms for the classification of fatigue sub-stages, unlike the existing methodology, which requires prior knowledge of AE-loading history and calculation of ∆K.

5.
Proteomics ; 23(15): e2200301, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37069743

RESUMO

Over the past decade, the majority of the mammalian genome considered to be noncoding has been revealed to be able to produce proteins. Many RNA molecules, mis-annotated as noncoding, actually are predicted to code for proteins. Some of those proteins have been identified and verified to play critical roles in multiple biological processes. The lipid droplet (LD) is a unique cellular organelle bound with a phospholipid monolayer membrane, and is closely associated with cellular lipid metabolism and metabolic disorders. However, it is still unclear how a protein targets to LDs. Here we identified a new protein on LDs, LDANP2, which is encoded by noncoding RNA, through a proteomics-based strategy. The key sequence for its localization on LDs, Truncation 3, is predicted to form an amphipathic helix. Surprisingly, the deletion of the first amino acid in Truncation 3 resulted in mitochondrial localization. How the types of amino acids would determine the LD or mitochondrial localizations of the protein was studied. The findings introduce a useful strategy to mine for new proteins and would provide clues to the understanding of how a protein would find its right organelle, with phospholipid monolayer or bilayer membrane.


Assuntos
Aminoácidos , Gotículas Lipídicas , Animais , Gotículas Lipídicas/metabolismo , Aminoácidos/análise , Proteínas/metabolismo , Fosfolipídeos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mamíferos/metabolismo
6.
J Lipid Res ; 64(10): 100436, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648212

RESUMO

Lipoproteins are complex particles comprised of a neutral lipid core wrapped with a phospholipid monolayer membrane and apolipoproteins on the membrane, which is closely associated with metabolic diseases. To facilitate the elucidation of its formation and dynamics, as well as its applications, we developed an in vitro system in which adiposomes, consisting of a hydrophobic core encircled by a monolayer-phospholipid membrane, were engineered into artificial lipoproteins (ALPs) by recruiting one or more kinds of apolipoproteins, for example, apolipoprotein (Apo) A-I, ApoE, ApoA-IV, and ApoB. In vitro and in vivo studies demonstrated the stability and biological activity of ALPs derived from adiposomes, which resembles native lipoproteins. Of note, adiposomes bearing ApoE were internalized via clathrin-mediated endocytosis following LDLR binding and were delivered to lysosomes. On the other hand, adiposomes bearing ApoA-IV mimicked the existing form of endogenous ApoA-IV and exhibited significant improvement in glucose tolerance in mice. In addition, the construction process was simple, precise, reproducible, as well as easy to adjust for mass production. With this experimental system, different apolipoproteins can be recruited to build ALPs for some biological goals and potential applications in biomedicine.

7.
Anal Chem ; 95(12): 5240-5247, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930570

RESUMO

Confocal Raman spectroscopy (CRS) is a powerful tool that has been widely used for biological tissue analysis because of its noninvasive nature, high specificity, and rich biochemical information. However, current commercial CRS systems suffer from limited detection regions (450-1750 cm-1), bulky sizes, nonflexibilities, slow acquisitions by consecutive excitations, and high costs if using a Fourier transform (FT) Raman spectroscopy with an InGaAs detector, which impede their adoption in clinics. In this study, we developed a portable CRS system with a simultaneous dual-wavelength source and a miniaturized handheld probe (120 mm × 60 mm × 50 mm) that can acquire spectra in both fingerprint (FP, 450-1750 cm-1) and high wavenumber (HW, 2800-3800 cm-1) regions simultaneously. An innovative design combining 671 and 785 nm lasers for simultaneous excitation through a compact and high-efficiency (>90%) wavelength combiner was implemented. Moreover, to decouple the fused FP and HW spectra, a first-of-its-kind precise Raman spectra separation algorithm (PRSSA) was developed based on the maximum a posteriori probability (MAP) estimate. The accuracy of spectra separation was greater than 99%, demonstrated in both phantom experiments and in vivo human skin measurements. The total data acquisition time was reduced by greater than 50% compared to other CRS systems. The results proved our proposed CRS system and PRSSA's superior capability in fast and ultrawideband spectra acquisition will significantly improve the integration of CRS in the clinical workflow.


Assuntos
Algoritmos , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Imagens de Fantasmas , Custos e Análise de Custo
8.
BMC Plant Biol ; 23(1): 359, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452336

RESUMO

BACKGROUND: Lysimachia L., the second largest genus within the subfamily Myrsinoideae of Primulaceae, comprises approximately 250 species worldwide. China is the species diversity center of Lysimachia, containing approximately 150 species. Despite advances in the backbone phylogeny of Lysimachia, species-level relationships remain poorly understood due to limited genomic information. This study analyzed 50 complete plastomes for 46 Lysimachia species. We aimed to identify the plastome structure features and hypervariable loci of Lysimachia. Additionally, the phylogenetic relationships and phylogenetic conflict signals in Lysimachia were examined. RESULTS: These fifty plastomes within Lysimachia had the typical quadripartite structure, with lengths varying from 152,691 to 155,784 bp. Plastome size was positively correlated with IR and intron length. Thirteen highly variable regions in Lysimachia plastomes were identified. Additionally, ndhB, petB and ycf2 were found to be under positive selection. Plastid ML trees and species tree strongly supported that L. maritima as sister to subg. Palladia + subg. Lysimachia (Christinae clade), while the nrDNA ML tree clearly placed L. maritima and subg. Palladia as a sister group. CONCLUSIONS: The structures of these plastomes of Lysimachia were generally conserved, but potential plastid markers and signatures of positive selection were detected. These genomic data provided new insights into the interspecific relationships of Lysimachia, including the cytonuclear discordance of the position of L. maritima, which may be the result of ghost introgression in the past. Our findings have established a basis for further exploration of the taxonomy, phylogeny and evolutionary history within Lysimachia.


Assuntos
Genomas de Plastídeos , Primulaceae , Primulaceae/genética , Filogenia , Lysimachia , Plastídeos/genética , Evolução Molecular
9.
Environ Sci Technol ; 57(48): 20261-20271, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992251

RESUMO

Quantum dots (QDs) are widely applied and inevitably released into the environment. The biotransformation of Se in typical CdSe/ZnS QDs coated with glutathione (CdSe/ZnS-GSH) to volatile alkyl selenides and the fate of alkyl selenides in the hydroponically grown rice system were investigated herein. After a 10-day exposure to CdSe/ZnS-GSH (100 nmol L-1), seven alkyl selenides, dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), methyl selenol (MSeH), ethylmethyl selenide (EMSe), ethylmethyl diselenide (EMDSe), dimethyl selenenyl sulfide (DMSeS), and ethylmethyl selenenyl sulfide (EMSeS), were detected in the exposure system using the suspect screening strategy. CdSe/ZnS-GSH was first biotransformed to DMSe and DMDSe by plant and microorganisms. The generated DMSe was volatilized to the gas phase, adsorbed and absorbed by leaves and stems, downward transported, and released into the hydroponic solution, whereas DMDSe tended to be adsorbed/absorbed by roots and upward transported to stems. The airborne DMSe and DMDSe also partitioned from the gas phase to the hydroponic solution. DMSe and DMDSe in the exposure system were further transformed to DMSeS, EMSeS, EMSe, EMDSe, and MSeH. This study gives a comprehensive understanding on the behaviors of Se in CdSe/ZnS-GSH in a rice plant system and provides new insights into the environmental fate of CdSe/ZnS QDs.


Assuntos
Compostos de Cádmio , Oryza , Pontos Quânticos , Compostos de Selênio , Plântula , Compostos de Zinco , Sulfetos , Biotransformação
10.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514854

RESUMO

Evaluating the condition of a Hadfield steel crossing nose using existing inspection methods is subject to accessibility and geographical constraints. Thus, the use of conditional monitoring techniques to complement the existing inspection methods has become increasingly necessary. This paper focuses on the study of acoustic emission (AE) behaviour and its correlation with fatigue crack growth in Hadfield steel during bending fatigue tests. The probability density function for acoustic emission parameters was analysed based on the power law distribution. The results show that a sharp increase in the moving average and cumulative sum of the AE parameter can give early warning against the final failure of Hadfield steel. Two parts (Part 1 and Part 2) can be identified using the change in the slope of duration rate (dD/dN) vs. ΔK plot during the stable fatigue crack growth (FCG) process where Paris's law is valid. The fitted power law exponent of AE parameters is smaller in Part 2 than in Part 1. The novelty of this research lies in the use of the fitted power law distribution of AE parameters for monitoring fatigue damage evolution in Hadfield steel, unlike existing AE fatigue monitoring methodology, which relies solely on the analysis of AE parameter trends.

11.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5855-5862, 2022 Nov.
Artigo em Zh | MEDLINE | ID: mdl-36472004

RESUMO

To comprehensively evaluate the quality of commercial Ginseng Radix et Rhizoma Rubra, 43 batches of commercial Ginseng Radix et Rhizoma Rubra were collected to determine the content of nine ginsenosides Rg_1, Re, Rb_1, Rk_3, Rh_4, 20(S)-Rg_3, 20(R)-Rg_3, Rk_1, and Rg_5 by high performance liquid chromatography(HPLC). The quality of the commercial Ginseng Radix et Rhizoma Rubra was evaluated by correlation analysis, principal component analysis, factor analysis, analysis of variance(ANOVA), and cluster heatmap analysis. The content determination indicated that the content of common ginsenosides in commercial Ginseng Radix et Rhizoma Rubra were higher while that of rare ginsenosides were lower. Multivariate statistical analysis revealed that ginsenosides Rg_1 and Rb_1 were significantly positively correlated with rare ginsenosides, and Rg_1, Rb_1 and rare ginsenosides played an important role in evaluating the quality of commercial Ginseng Radix et Rhizoma Rubra. In combination with the processing principle and current quality situation of Ginseng Radix et Rhizoma Rubra, it is recommended to improve the content limit of Rb_1 in the existing quality standards.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax , Ginsenosídeos/análise , Rizoma/química , Raízes de Plantas/química , Cromatografia Líquida de Alta Pressão
12.
Microb Cell Fact ; 20(1): 58, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653345

RESUMO

BACKGROUND: Betaine, an osmoprotective compatible solute, has been used to improve L-threonine production in engineered Escherichia coli L-threonine producer. Betaine supplementation upregulates the expression of zwf encoding glucose-6-phosphate dehydrogenase, leading to the increase of NADPH, which is beneficial for L-threonine production. In E. coli, betaine can be taken through ProP encoded by proP or ProVWX encoded by proVWX. ProP is a H+-osmolyte symporter, whereas ProVWX is an ABC transporter. ProP and ProVWX mediate osmotic stress protection by transporting zwitterionic osmolytes, including glycine betaine. Betaine can also be synthesized in E. coli by enzymes encoded by betABIT. However, the influence of ProP, ProVWX and betABIT on L-threonine production in E. coli has not been investigated. RESULTS: In this study, the influence of ProP, ProVWX and betABIT on L-threonine production in E. coli has been investigated. Addition of betaine slightly improved the growth of the L-threonine producing E. coli strain TWF001 as well as the L-threonine production. Deletion of betABIT retarded the growth of TWF001 and slightly decreased the L-threonine production. However, deletion of proP or/and proVWX significantly increased the L-threonine production. When proP was deleted, the L-threonine production increased 33.3%; when proVWX was deleted, the L-threonine production increased 40.0%. When both proP and proVWX were deleted, the resulting strain TSW003 produced 23.5 g/l L-threonine after 36 h flask cultivation. The genes betABIT, proC, fadR, crr and ptsG were individually deleted from TSW003, and it was found that further absence of either crr (TWS008) or ptsG (TWS009) improved L-threonine production. TSW008 produced 24.9 g/l L-threonine after 36 h flask cultivation with a yield of 0.62 g/g glucose and a productivity of 0.69 g/l/h. TSW009 produced 26 g/l L-threonine after 48 h flask cultivation with a yield of 0.65 g/g glucose and a productivity of 0.54 g/l/h, which is 116% increase compared to the control TWF001. CONCLUSIONS: In this study, L-threonine-producing E. coli strains TSW008 and TSW009 with high L-threonine productivity were developed by regulating the intracellular osmotic pressure. This strategy could be used to improve the production of other products in microorganisms.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Simportadores/metabolismo , Treonina/biossíntese
13.
Environ Sci Technol ; 55(21): 14639-14648, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648271

RESUMO

In this work, aggregation of graphene oxide (GO) in synthetic surface water at high pH was elaborated, and experimental characterizations and molecular dynamics simulations were employed to uncover the mechanisms. According to previous studies, aggregation of GO is supposed to be impossible at high pH considering the deprotonation of functional groups on GO and the increased electrostatic repulsions. However, significant aggregations and a reversed trend in zeta potential at high pH were observed. One of the mechanisms was that the promoted metal adsorption at high pH can offset the negative charges generated by the deprotonation. Additionally, the stripping of oxidation debris (OD) on GO also contributes to the unexpected trend in the aggregation behavior and zeta potential. GO consists of lightly oxidized functionalized graphene (FG) sheets and highly oxidized OD. Upon the increase of pH and the deprotonation of functional groups on FG and OD, OD was stripped from FG, which decreased the electrostatic repulsions between FG sheets and accelerated the aggregation. The stripped ODs may recombine to FG edges and bridged FG sheets, which also contribute to the aggregation. Upon the stripping of OD and microstructure transformation of FG, FG-water-OD aggregates formed. According to this study, the aggregation of GO was accompanied by deprotonation of functional groups, metal adsorption, and surface property transformation triggered by the stripping of ODs and should be considered during the development of GO-related nanomaterials and the evaluation of its environmental impact.


Assuntos
Grafite , Adsorção , Concentração de Íons de Hidrogênio , Óxidos
14.
Biotechnol Appl Biochem ; 68(3): 568-584, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32474971

RESUMO

In this study, l-isoleucine production in Corynebacterium glutamicum WM001 was improved by deleting three genes in the genome, replacing the native promoter of ilvA in the genome, and overexpression of five genes in an alr-based auxotrophic complementation expression system. The three genes deleted in the genome are alaT, brnQ, and alr. Deletion of alaT improved l-isoleucine production by increasing the supply of pyruvate, whereas deletion of brnQ improved l-isoleucine production by blocking the uptake of extracellular l-isoleucine. Exchange of the native promoter of ilvA with promoter tac or tacM could contribute to l-isoleucine production by increasing 2-ketobutyric acid; tac is better than tacM for improving l-isoleucine yield. Different combinations of the genes ilvBN, ppnK, lrp, and brnFE were overexpressed in an alr-based auxotrophic complementation expression system to further improve l-isoleucine production, and the best yield after 72-H flask fermentation was obtained from the strain WM005/pYCW-1-ilvBN2-ppnK1. Without addition of any antibiotics, WM005/pYCW-1-ilvBN2-ppnK1 could produce 32.1 g/L l-isoleucine after 72-H fed-batch fermentation, which is 34.3% increase compared with the original strain WM001.


Assuntos
Corynebacterium glutamicum/metabolismo , Isoleucina/biossíntese , Engenharia Metabólica , Corynebacterium glutamicum/genética , Isoleucina/genética
15.
J Cell Biochem ; 121(8-9): 3871-3881, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31693229

RESUMO

Colorectal cancer (CRC) is a type of malignant cancer that has become particularly prevalent worldwide. It is of crucial importance to CRC treatment that the underlying molecular mechanism of CRC progression is determined. The NRAS gene is an important small G protein that is involved in various biological processes, including cancers. NRAS is an oncogene in many neoplasms but its function and regulation in CRC have seldom been investigated. In this study, it was uncovered that the NRAS protein was significantly upregulated in CRC tissues. According to a bioinformatics prediction, we identified that miR-144 may target NRAS to suppress its expression. In vitro experiments indicated that miR-144 decreased NRAS expression in different CRC cell lines (SW480, LoVo, and Caco2). By inhibiting NRAS, miR-144 repress SW480 cell proliferation and migration. Moreover, miR-144 decelerated the growth of SW480 xenograft tumors in vivo by targeting NRAS. In summary, our results identified a novel miR-144-NRAS axis in CRC that could promote the research and treatment of CRC.

16.
Metab Eng ; 61: 33-46, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32371091

RESUMO

In metabolic engineering, unbalanced microbial carbon distribution has long blocked the further improvement in yield and productivity of high-volume natural metabolites. Current studies mostly focus on regulating desired biosynthetic pathways, whereas few strategies are available to maximize L-threonine efficiently. Here, we present a strategy to guarantee the supply of reduced cofactors and actualize L-threonine maximization by regulating cellular carbon distribution in central metabolic pathways. A thermal switch system was designed and applied to divide the whole fermentation process into two stages: growth and production. This system could rebalance carbon substrates between pyruvate and oxaloacetate by controlling the heterogenous expression of pyruvate carboxylase and oxaloacetate decarboxylation that responds to temperature. The system was tested in an L-threonine producer Escherichia coli TWF001, and the resulting strain TWF106/pFT24rp overproduced L-threonine from glucose with 111.78% molar yield. The thermal switch system was then employed to switch off the L-alanine synthesis pathway, resulting in the highest L-threonine yield of 124.03%, which exceeds the best reported yield (87.88%) and the maximum available theoretical value of L-threonine production (122.47%). This inducer-free genetic circuit design can be also developed for other biosynthetic pathways to increase product conversion rates and shorten production cycles.


Assuntos
Carbono/metabolismo , Escherichia coli , Engenharia Metabólica , Treonina/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Treonina/genética
17.
Nano Lett ; 19(12): 8673-8682, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31726010

RESUMO

Metalenses, planar lenses realized by placing subwavelength nanostructures that locally impart lenslike phase shifts to the incident light, are promising as a replacement for refractive optics for their ultrathin, lightweight, and tailorable characteristics, especially for applications where payload is of significant importance. However, the requirement of fabricating up to billions of subwavelength structures for centimeter-scale metalenses can constrain size-scalability and mass-production for large lenses. In this Letter, we demonstrate a centimeter-scale, all-glass metalens capable of focusing and imaging at visible wavelength, using deep-ultraviolet (DUV) projection stepper lithography. Here, we show size-scalability and potential for mass-production by fabricating 45 metalenses of 1 cm diameter on a 4 in. fused-silica wafer. The lenses show diffraction-limited focusing behavior for any homogeneously polarized incidence at visible wavelengths. The metalens' performance is quantified by the Strehl ratio and the modulation transfer function (MTF), which are then compared with commercial refractive spherical and aspherical singlet lenses of similar size and focal length. We further explore the imaging capabilities of our metalens using a color-pixel sCMOS camera and scanning-imaging techniques, demonstrating potential applications for virtual reality (VR) devices or biological imaging techniques.


Assuntos
Vidro/química , Nanoestruturas/química , Impressão , Dióxido de Silício/química , Raios Ultravioleta , Óptica e Fotônica
18.
Biotechnol Appl Biochem ; 66(6): 962-976, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486127

RESUMO

Wild-type Escherichia coli MG1655 usually does not accumulate l-threonine. In this study, the effects of 13 genes related to the glucose uptake, glycolysis, TCA cycle, l-threonine biosynthesis, or their regulation on l-threonine accumulation in E. coli MG1655 were investigated. Sixteen E. coli mutant strains were constructed by chromosomal deletion or overexpression of one or more genes of rsd, ptsG, ptsH, ptsI, crr, galP, glk, iclR, and gltA; the plasmid pFW01-thrA*BC-rhtC harboring the key genes for l-threonine biosynthesis and secretion was introduced into these mutants. The analyses on cell growth, glucose consumption, and l-threonine production of these recombinant strains showed that most of these strains could accumulate l-threonine, and the highest yield was obtained in WMZ016/pFW01-thrA*BC-rhtC. WMZ016 was derived from MG1655 by deleting crr and iclR and enhancing the expression of gltA. WMZ016/pFW01-thrA*BC-rhtC could produce 17.98 g/L l-threonine with a yield of 0.346 g/g glucose, whereas the control strain MG1655/pFW01-thrA*BC-rhtC could only produce 0.68 g/L l-threonine. In addition, WMZ016/pFW01-thrA*BC-rhtC could tolerate the high concentration of glucose and produced no detectable by-products; therefore, it should be an ideal platform strain for further development. The results indicate that manipulating the glucose uptake and TCA cycle could efficiently increase l-threonine production in E. coli.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Glioxilatos/metabolismo , Treonina/biossíntese , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Mutação
19.
Opt Express ; 26(2): 1573-1585, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402031

RESUMO

Optical components, such as lenses, have traditionally been made in the bulk form by shaping glass or other transparent materials. Recent advances in metasurfaces provide a new basis for recasting optical components into thin, planar elements, having similar or better performance using arrays of subwavelength-spaced optical phase-shifters. The technology required to mass produce them dates back to the mid-1990s, when the feature sizes of semiconductor manufacturing became considerably denser than the wavelength of light, advancing in stride with Moore's law. This provides the possibility of unifying two industries: semiconductor manufacturing and lens-making, whereby the same technology used to make computer chips is used to make optical components, such as lenses, based on metasurfaces. Using a scalable metasurface layout compression algorithm that exponentially reduces design file sizes (by 3 orders of magnitude for a centimeter diameter lens) and stepper photolithography, we show the design and fabrication of metasurface lenses (metalenses) with extremely large areas, up to centimeters in diameter and beyond. Using a single two-centimeter diameter near-infrared metalens less than a micron thick fabricated in this way, we experimentally implement the ideal thin lens equation, while demonstrating high-quality imaging and diffraction-limited focusing.

20.
Arch Virol ; 163(10): 2899-2902, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29872952

RESUMO

Two double-stranded RNA viruses, named Culex tritaeniorhynchus totivirus NJ2 (CTV_NJ2) and NJ3 (CTV_NJ3), were discovered from wild-captured Culex tritaeniorhynchus mosquitoes. The complete genomes (7,624 and 7,612 bp in length) were obtained using RNA sequencing. Both CTV_NJ2 and CTV_NJ3 encode a putative capsid protein and an RNA-dependent RNA polymerase. The most similar strain to CTV_NJ2/3 is Omono River virus strain AK4 (ORV-AK4). The CP and RdRp identities of AK4 are different to CTV_NJ2 (84% and 87%) and CTV_NJ3 (47% and 62%). Phylogenetic analysis showed that taxonomically speaking CTV_NJ2/3 grouped within the unclassified Totiviridae and formed a distinct clade with other arthropod-infecting viruses.


Assuntos
Culex/virologia , Genoma Viral/genética , Totiviridae , Animais , Proteínas do Capsídeo/genética , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Totiviridae/classificação , Totiviridae/genética , Totiviridae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA