Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2405068, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077978

RESUMO

The function-oriented synthesis of polyoxometalate (POM) nanoclusters has become an increasingly important area of research. Herein, the well-known broad-spectrum anticancer drug Ge-132 which contains GeIV as potential heteroatoms and carboxyl coordination sites, is introduced to the POM system, leading to the first organogermanium functionalized GeIV-SbIII-templating POM nanocluster Na4[H2N(CH3)2]16 H18[Sm4(H2O)12W4O14Ge(CH2CH2COOH)]2[SbW9O33]4[Ge(CH2CH2COOH) SbW15O54]2·62H2O (1). An unprecedented organogermanium templating Dawson-like [Ge(CH2CH2COOH)SbW15O54]12- building block is discovered. To take advantage of the potential pharmaceutical activity of such an organogermanium-functionalized POM cluster, 1 is further composited with gold nanoparticles (NPs) to prepare 1-Au NPs, which doubles the blood circulation time of 1-based nanodrug. Efficient separation of photogenerated charges in 1-Au NPs largely boosts the photothermal conversion efficiency (PCE = 55.0%), which is nearly 2.1 times that of either single 1 (PCE = 26.7%) or Au NPs (PCE = 26.2%), and simultaneously facilitate the generation of toxic activate reactive oxygen species in tumor microenvironment. Based on these findings, it is demonstrated that 1-Au NPs are a multifunctional and renal clearable nanomedicine with great potential in photoacoustic imaging guiding photothermal-chemodynamic therapy for breast cancer.

2.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38828813

RESUMO

Computational modeling of plasmon-mediated molecular photophysical and photochemical behaviors can help us better understand and tune the bound molecular properties and reactivity and make better decisions to design and control nanostructures. However, computational investigations of coupled plasmon-molecule systems are challenging due to the lack of accurate and efficient protocols to simulate these systems. Here, we present a hybrid scheme by combining the real-time time-dependent density functional theory (RT-TDDFT) approach with the time-domain frequency dependent fluctuating charge (TD-ωFQ) model. At first, we transform ωFQ in the frequency-domain, an atomistic electromagnetic model for the plasmonic response of plasmonic metal nanoparticles (PMNPs), into the time-domain and derive its equation-of-motion formulation. The TD-ωFQ introduces the nonequilibrium plasmonic response of PMNPs and atomistic interactions to the electronic excitation of the quantum mechanical (QM) region. Then, we combine TD-ωFQ with RT-TDDFT. The derived RT-TDDFT/TD-ωFQ scheme allows us to effectively simulate the plasmon-mediated "real-time" electronic dynamics and even the coupled electron-nuclear dynamics by combining them with the nuclear dynamics approaches. As a first application of the RT-TDDFT/TD-ωFQ method, we study the nonradiative decay rate and plasmon-enhanced absorption spectra of two small molecules in the proximity of sodium MNPs. Thanks to the atomistic nature of the ωFQ model, the edge effect of MNP on absorption enhancement has also been investigated and unveiled.

3.
J Thorac Dis ; 16(5): 3228-3250, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883620

RESUMO

Background: The preoperative differential diagnosis of nodular lung adenocarcinoma has long been a challenging issue for thoracic surgeons. This study aimed to explore differential diagnosis of nodular lung adenocarcinoma by comprehensively analyzing its clinical, computed tomography (CT) imaging, and postoperative pathological and genetic features. Methods: The clinical, CT imaging, and postoperative pathological features of different classifications of nodular lung adenocarcinoma were retrospectively analyzed through univariate and multivariate statistical methods. Results: There were 132 patients with nodular lung adenocarcinoma enrolled. Firstly, compared with ground-glass nodular lung adenocarcinoma, solid nodular lung adenocarcinoma was more common in women [odds ratio (OR), 3.662; 95% confidence interval (CI): 1.066-12.577] and older adults (OR, 1.061; 95% CI: 1.007-1.119), and CT signs were mostly lobulation (OR, 4.957; 95% CI: 1.714-14.337) and spiculation (OR, 8.214; 95% CI: 2.740-24.621); the mean CT (CTm) value of solid nodular lung adenocarcinoma was significantly higher than that of ground-glass nodular lung adenocarcinoma, and the optimal diagnostic threshold was -267.5 Hounsfield units (HU). Secondly, the maximum diameter of nodule size (NSmax) of invasive adenocarcinoma (IAC) was significantly greater than that of minimally IAC (MIA; OR, 6.306; 95% CI: 1.191-33.400) or atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS; OR, 189.539; 95% CI: 4.720-7,610.476), and the optimal diagnostic threshold between IAC and MIA was 1.35 cm; the CTm value of IAC was significantly higher than that of MIA, and the optimal diagnostic threshold was -460.75 HU. Thirdly, lepidic-predominant adenocarcinoma (LPA) manifest more commonly as pure ground-glass nodule (pGGN; OR, 6.252; 95% CI: 1.429-27.358) or mixed ground-glass nodule (mGGN; OR, 4.224; 95% CI: 1.223-14.585). Moreover, the mutation rate of epidermal growth factor receptor (EGFR) in IAC was 70.69% (41/58). The EGFR mutation rates of mGGNs (OR, 8.794; 95% CI: 1.489-51.933) and solid nodules (SNs; OR, 12.912; 95% CI: 1.597-104.383) were significantly higher than that of pGGNs. Furthermore, compared with those of micropapillary-predominant adenocarcinoma (MPA), solid-predominant adenocarcinoma (SPA), or invasive mucinous adenocarcinoma (IMA), there were significantly higher EGFR mutation rates in acinar-predominant adenocarcinoma/papillary-predominant adenocarcinoma (APA/PPA; OR, 55.925; 95% CI: 4.045-773.284) and LPA (OR, 38.265; 95% CI: 2.307-634.596). Conclusions: Different classifications of nodular lung adenocarcinoma have their own clinicopathological and CT imaging features, and the latter is the main predictor.

4.
J Colloid Interface Sci ; 668: 335-342, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678888

RESUMO

Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.


Assuntos
Molécula de Adesão da Célula Epitelial , Matriz Extracelular , Análise de Célula Única , Análise Espectral Raman , Matriz Extracelular/metabolismo , Humanos , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ouro/química , Resinas Acrílicas/química , Prata/química , Propriedades de Superfície , Linhagem Celular Tumoral , Compostos de Anilina/química , Tamanho da Partícula , Moléculas de Adesão Celular
5.
Small Methods ; : e2400336, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517268

RESUMO

Industrializing water electrolyzers demands better electrocatalysts, especially for the anodic oxygen evolution reaction (OER). The prevailing OER catalysts are Ir or Ru-based nanomaterials, however, they still suffer from insufficient stability. An alternative yet considerably less explored approach is to upgrade Rh, a known stable but moderately active element for OER electrocatalysis, via rational structural engineering. Herein, a precise synthesis of assembled RhRuFe trimetallenes (RhRuFe TMs) with an average thickness of 1 nm for boosting overall water splitting catalysis is reported. Favorable mass transport and optimized electronic structure collectively render RhRuFe TMs with an improved OER activity of an overpotential of 330 mV to deliver 10 mA cm-2, which is significantly lower than the Rh/C control (by 601 mV) and reported Rh-based OER electrocatalysts. In particular, the RhRuFe TMs-based water splitting devices can achieve the current density of 10 mA cm-2 at a low voltage of 1.63 V, which is among the best in the Rh-based bifunctional catalysts for electrolyzers. The addition of Fe in RhRuFe TMs can modulate the strain/electron distribution of the multi-alloy, which regulates the binding energies of H* and OH* in hydrogen and oxygen evolution reactions for achieving the enhanced bifunctional OER and HER catalysis is further demonstrated.

6.
Talanta ; 271: 125697, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295449

RESUMO

Therapeutic drug monitoring (TDM) is an important tool in precision medicine as it allows estimating pharmacodynamic and pharmacokinetic effects of drugs in clinical settings. An accurate, fast and real-time determination of the drug concentrations in patients ensures fast decision-making processes at the bedside to optimize the clinical treatment. Surface-enhanced Raman spectroscopy (SERS), which is based on the application of metallic nanostructured substrates to amplify the inherent weak Raman signal, is a promising technique in medical research due to its molecular specificity and trace sensitivity accompanied with short detection times. Therefore, we developed a SERS-based detection scheme using silicon nanowires decorated with silver nanoparticles, fabricated by means of top-down etching combined with chemical deposition, to detect the antibiotic ceftriaxone (CRO) in spiked fresh plasma and microdialysis samples. We successfully detected CRO in both matrices with an LOD of 94 µM in protein-depleted fresh plasma and 1.4 µM in microdialysate.


Assuntos
Nanopartículas Metálicas , Nanofios , Humanos , Antibacterianos/farmacologia , Prata/química , Ceftriaxona , Silício/química , Nanopartículas Metálicas/química , Nanofios/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA