Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 115(4): 1209-1223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288904

RESUMO

Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Sirtuínas/genética , Sirtuínas/metabolismo
2.
Small ; 20(12): e2308400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948438

RESUMO

For supporting active metal, the cavity confinement and mass transfer facilitation lie not in one sack, a trade-off between high activity and good stability of the catalyst is present. Porous organic cages (POCs) are expected to break the trade-off when metal particles are properly loaded. Herein, three organic cages (CC3, RCC3, and FT-RCC3) are employed to support Pd nanoclusters for catalytic hydrogenation. Subnanometer Pd clusters locate differently in different cage frameworks by using the same reverse double-solvents approach. Compared with those encapsulated in the intrinsic cavity of RCC3 and anchored on the outer surface of CC3, the Pd nanoclusters orderly assembled in FT-RCC3 crystal via isomorphous substitution exhibit superior activity, high selectivity, and good stability for semi-hydrogenation of phenylacetylene. Isomorphous substitution of FT-RCC3 crystal by Pd nanoclusters is originated from high crystallization capacity of FT-RCC3 and specific interaction of each Pd nanocluster with four cage windows. Both confinement function and H2 accumulation capacity of FT-RCC3 are fully utilized to support active Pd nanoclusters for efficient selective hydrogenation. The present results provide a new perspective to the heterogeneous catalysis field in terms of crystalizing metal nanoclusters in POC framework and outside the cage for making the best use of both parts.

3.
Langmuir ; 40(20): 10561-10570, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728666

RESUMO

The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn-Ce-NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn-Ce-NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn-Ce-NCNTs is 68.1 mW cm-2 at the current density of 138.9 mA cm-2 for a Zn-air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm-2 at 106.1 mA cm-2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are -0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (-0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only -0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.

4.
Mol Cell Biochem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819598

RESUMO

Damage of intestinal barrier function (BF) after ischemia/reperfusion (I/R) injury can induce serious complications and high mortality. MicroRNAs (miRNAs) are involved in intestinal mucosal BF and epithelial proliferation after I/R injury have been reported. We aimed to investigate the role and regulatory mechanism of miR-142-3p (miR-142) in intestinal epithelial proliferation and BF after I/R injury. We detected the proliferation, barrier function and miR-142 expression in clinical ischemic intestinal tissues. Furthermore, we induced an in vivo intestinal I/R injury mouse model and in vitro IEC-6 cells hypoxia/reoxygenation (H/R) injury model. After increasing and decreasing expression of miR-142, we detected the proliferation and barrier function of intestinal epithelial cells after I/R or H/R injury. We found that miR-142 expression was significantly increased in clinical ischemic intestinal mucosa and mouse intestinal mucosa exposed to I/R injury, and there was an inverse relationship between miR-142 and proliferation/BF. Inhibition of miR-142 significant promoted intestinal epithelial proliferation and BF after I/R injury. Furthermore, inhibition of miR-142 improved overall survival rate of mice after I/R injury. MiR-142 directly targeted FoxM1 which was identified by bioinformatics analysis and luciferase activity assay in IEC-6 cells. Inhibition of miR-142 promotes intestinal epithelial proliferation and BF after I/R injury in a FoxM1-mediated manner.

5.
J Am Chem Soc ; 145(46): 25252-25263, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37957828

RESUMO

The development of highly active and low-cost oxygen reduction reaction (ORR) catalysts is crucial for the practical application of hydrogen fuel cells. However, the linear scaling relation (LSR) imposes an inherent Sabatier's limitation for most catalysts including the benchmark Pt with an insurmountable overpotential ceiling, impeding the development of efficient electrocatalysts. To avoid such a limitation, using earth-abundant metal oxides with different crystal phases as model materials, we propose an effective and dynamic reaction pathway through constructing spatially correlated Pt-Mn pair sites, achieving an excellent balance between high activity and low Pt loading. Experimental and theoretical calculations demonstrate that manipulating the intermetallic distance and charge distribution of Pt-Mn pairs can effectively promote O-O bond cleavage at these sites through a bridge configuration, circumventing the formation of *OOH intermediates. Meanwhile, the dynamic adsorption configuration transition from the bridge configuration of O2 to the end-on configuration of *OH improves *OH desorption at the Mn site within such pairs, thereby avoiding Sabatier's limitation. The well-designed Pt-Mn/ß-MnO2 exhibits outstanding ORR activity and stability with a half-wave potential of 0.93 V and barely any activity degradation for 70 h. When applied to the cathode of a H2-O2 anion-exchange membrane fuel cell, this catalyst demonstrates a high peak power density of 287 mW cm-2 and 500 h of stability under a cell voltage of 0.6 V. This work reveals the adaptive bonding interactions of atomic pair sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed ORR catalysts beyond the Sabatier optimum.

6.
J Am Chem Soc ; 145(4): 2271-2281, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654479

RESUMO

Dynamic reconstruction of catalyst active sites is particularly important for metal oxide-catalyzed oxygen evolution reaction (OER). However, the mechanism of how vacancy-induced reconstruction aids OER remains ambiguous. Here, we use Co3O4 with Co or O vacancies to uncover the effects of different defects in the reconstruction process and the active motifs relevant to alkaline OER. Combining in situ characterization and theoretical calculations, we found that cobalt oxides are converted to an amorphous [Co(OH)6] intermediate state, and then the mismatched rates of *OH adsorption and deprotonation lead to irreversible catalyst reconstruction. The stronger *OH adsorption but weaker deprotonation induced by O defects provides the driving force for reconstruction, while Co defects favor dehydrogenation and reduce the reconstruction rate. Importantly, both O and Co defects trigger highly OER-active bridge Co sites in reconstructed catalysts, of which Co defects induce a short Co-Co distance (3.38 Å) under compressive lattice stress and show the best OER activity (η10 of 262 mV), superior to reconstructed oxygen-defected Co3O4-VO (η10 of 300 mV) and defect-free Co3O4 (η10 of 320 mV). This work highlights that engineering defect-dependent reconstruction may provide a rational route for electrocatalyst design in energy-related applications.

7.
J Am Chem Soc ; 144(1): 573-581, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34955021

RESUMO

Dispersing single palladium atoms on a support is promising to minimize the usage of palladium and improve the selectivity for alkyne semihydrogenation, but its activity is often very low as a result of unfavorable H2 activation. Here, we load palladium onto α-Fe2O3(012) to construct highly active and stable single-site Pd-Fe pairs with luxuriant d-electron domination near the Fermi level driven by strong electronic coupling and prove that Pd-Fe pairs cooperatively adsorb H2 and dissociate an H─H bond, whereas solo Pd sites enable preferential desorption of C═C intermediate, thus achieving both high activity and high selectivity for alkyne hydrogenation. This catalyst exhibits state-of-the-art performance in purifying acetylene of ethylene stream, with 99.6% and 100% conversion and 96.7% and 94.7% selectivity at 353 and 393 K, respectively, and excellent stability with negligible activity decay after a 200 h test. This single-site pair inherits the advantage but overcomes the weakness of both Pd ensemble and single Pd atoms, enabling ultralow-Pd-loading catalysts for selective hydrogenation.

8.
Chemistry ; 28(72): e202202593, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36106822

RESUMO

Photocatalysis can create a green way to produce clean energy resources, degrade pollutants and achieve carbon neutrality, making the construction of efficient photocatalysts significant in solving environmental issues. Conjugated polymers (CPs) with adjustable band structures have superior light-absorption capacity and flexible morphology that facilitate contact with other components to form advanced heterojunctions. Interface engineering can strengthen the interfacial contact between the components and further enlarge the interfacial contact area, enhance light absorption, accelerate charge transfer and improve the reusability of the composites. In order to throw some new light on heterojunction interface regulation at a molecular level, herein we summarize CP-based composites with improved photocatalytic performance according to the types of interactions (covalent bonding, hydrogen bonding, electrostatic interactions, π-π stacking, and other polar interactions) between the components and introduce the corresponding interface building methods, identifying techniques. Then the roles of interfaces in different photocatalytic applications are discussed. Finally, we sum up the existing problems in interface engineering of CP-based composites and look forward to the possible solutions.

9.
Chemistry ; 27(70): 17628-17636, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648677

RESUMO

Improving the insufficient carrier separation dynamics is still of significance in carbon nitride (C3 N4 ) research. Extensive research has been devoted to improving the carrier separation efficiency through a single strategy, while ignoring the synergistic enhancement effect produced by coupling two or more conventional strategies. Herein, we reported the fabrication of cyano group-containing Fe-doped C3 N4 porous materials via direct co-calcination of iron acetylacetonate and melamine for synergistically improving the photocatalytic performance. Iron acetylacetonate can promote the generation of cyano groups and form Fe-doping in C3 N4 , thereby increasing the visible-light absorption and reactive sites. Further, the internal donor-acceptor system formed by cyano groups and Fe-doped sites promoted charge carrier separation and inhibited the radiation recombination of e- -h+ pairs. The optimized photocatalytic activity of Fe-CN-2 sample was 4.5 times of bulk C3 N4 (BCN).

10.
Phys Chem Chem Phys ; 23(38): 22004-22013, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569572

RESUMO

Propane dehydrogenation (PDH) is an effective approach to produce propylene. Downsizing the Pt species to single atom catalysts (SACs) has become a hotspot, owing to the maximum utilization and excellent catalytic behavior. However, the agglomeration of SACs is the decisive limitation for high temperature PDH. Herein, single Pt atoms were anchored on graphene with different types of vacancies, and their catalytic performances on PDH were explored based on density functional theory (DFT). As the vacancy size increased, the catalytic activity decreased. It was because the combined site of the detached H atom in propane would transfer from the Pt atom to the C atom around vacancies, thus increasing the migration distance and lowering the activity. However, with the increase of vacancy size, the selectivity to propylene was improved, owing to the enhanced repulsion between C atoms in graphene and propylene. Therefore, instead of stabilizing the single atom, vacancies in carbon materials can also tailor the catalytic performance by geometric disturbance. This fundamental work opens up the possibility for purposeful SAC design in PDH.

11.
World J Surg Oncol ; 19(1): 17, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468158

RESUMO

BACKGROUND: The aim of this study was to investigate the overall survival (OS) between proximal gastric cancer (PG) and distal gastric cancer (DG) patients after gastrectomy. METHODS: Articles on the prognostic study of PG and DG patients after gastrectomy were collected from the PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, and VIP databases from the date of establishment until December 2020. The data were statistically analyzed by Stata software (version 11.0, StataCorp). RESULTS: A total of 10 articles met the inclusion criteria. Meta-analysis showed that the 1-, 3- and 5-year OS rates of PG patients were significantly lower than those of DG patients (RR = 0.898, 95% CI: 0.825 to 0.977, P = 0.013; RR = 0.802, 95% CI: 0.708 to 0.909, P = 0.001; RR = 0.736, 95% CI: 0.642 to 0.844, P = 0.000). After subgroup analysis according to different countries, the combined RR values of were as follows: 1-year OS: eastern countries: RR = 0.966, 95% CI: 0.944 to 0.988, P = 0.003, western countries: RR = 0.687, 95% CI: 0.622 to 0.759, P = 0.000; 3-year OS: eastern countries: RR = 0.846, 95% CI: 0.771 to 0.929, P = 0.000, western countries: RR = 0.742, 95% CI: 0.399 to 1.382, P = 0.348; and 5-year OS: eastern countries: RR = 0.798, 95% CI: 0.716 to 0.889, P = 0.000, western countries: RR = 0.646, 95% CI: 0.414 to 1.008, P = 0.054. CONCLUSION: In terms of 1-, 3-, and 5-year OS, PG patients had lower rates than DG patients and the eastern countries/western countries subgroup, but there were no significant differences in 3- and 5-year OS for the western countries. These results merit further clinical validation in future studies. (Registration ID: UMIN000040393; Date of registration: 2020/05/13).


Assuntos
Neoplasias Gástricas , China , Gastrectomia , Humanos , Prognóstico , Neoplasias Gástricas/cirurgia , Taxa de Sobrevida
12.
BMC Surg ; 21(1): 315, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301235

RESUMO

PURPOSE: Amyand's hernia is a rare hernia defined as an inguinal hernia that contains the appendix within the hernia sac. Current treatment of Amyand's hernia remains controversial. Our study retrospectively reviewed 6 cases of Amyand's hernia, aiming to provide a reference for the surgical treatment of Amyand's hernia. METHODS: Six patients diagnosed with Amyand's hernia from September 2010 to May 2020 were retrospectively enrolled in our study. We summarized clinical data of six patients including the chief complaint, physical examinations, laboratory examinations, imaging examinations, surgical methods, and postoperative treatments and outcomes. RESULTS: The diagnosis of six cases with Amyand's hernia was made during surgery. Two patients had normal appendixes whereas the remaining four patients had appendicitis. Two patients with normal appendix received tension-free mesh repair through the inguinal incision. Among those with inflamed or perforated appendixes, two received mesh repair and the other two did not. The discharge time after surgery of six patients was 9.8 ± 6.1 days. One patient suffered from a wound infection. No additional postoperative complications were detected. CONCLUSIONS: Computed tomography and ultrasonography are helpful but limited in the definite diagnosis of Amyand's hernia. The presence of a normal appendix does not require to be resected, but appendicectomy is necessary if the appendix is inflamed. The treatment of Amyand's hernia should be tailored based on the patient's condition and the type of Amyand's hernia.


Assuntos
Apendicite , Apêndice , Hérnia Inguinal , Apendicectomia , Apendicite/complicações , Apendicite/diagnóstico , Apendicite/cirurgia , Hérnia Inguinal/complicações , Hérnia Inguinal/diagnóstico , Hérnia Inguinal/cirurgia , Humanos , Estudos Retrospectivos
13.
Chemistry ; 26(9): 2073-2079, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31851761

RESUMO

The chemical bonding of Zintl clusters is still an evolving and hot topic in modern chemistry. In this paper we synthesized a novel [K([2.2.2]crypt)]4 [In8 Bi13 ] complex in a condensed phase. The quantum chemical calculations and X-ray data revealed that the compound consists of the 1:1 mixture of [Bi@In8 Bi12 ]3- and [Bi@In8 Bi12 ]5- clusters. To the date, those clusters are the largest binary clusters composed of In and Bi elements. Herein, we introduce a spherical aromatic description of chemical bonding for such clusters. We show through AdNDP, ELF, and induced magnetic field and quantitative NICS analyzes that both clusters are spherically aromatic which explains their high symmetry, stability, and peculiar magnetic properties. We believe that this work will help researchers in the further development and understanding of chemical bonding in Zintl clusters.

14.
Angew Chem Int Ed Engl ; 59(6): 2313-2317, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31743560

RESUMO

Ferric oxides and (oxy)hydroxides, although plentiful and low-cost, are rarely considered for oxygen evolution reaction (OER) owing to the too high spin state (eg filling ca. 2.0) suppressing the bonding strength with reaction intermediates. Now, a facile adsorption-oxidation strategy is used to anchor FeIII atomically on an ultrathin TiO2 nanobelt to synergistically lower the spin state (eg filling ca. 1.08) to enhance the adsorption with oxygen-containing intermediates and improve the electro-conductibility for lower ohmic loss. The electronic structure of the catalyst is predicted by DFT calculation and perfectly confirmed by experimental results. The catalyst exhibits superior performance for OER with overpotential 270 mV @10 mA cm-2 and 376 mV @100 mA cm-2 in alkaline solution, which is much better than IrO2 /C and RuO2 /C and is the best iron-based OER catalyst free of active metals such as Ni, Co, or precious metals.

15.
Cell Physiol Biochem ; 49(6): 2320-2332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261488

RESUMO

BACKGROUND/AIMS: Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine. METHODS: Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1ß, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro. RESULTS: Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1ß, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells. CONCLUSION: The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Intestinos/patologia , Lactatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Ácidos Cafeicos/uso terapêutico , Caspase 3/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Lactatos/uso terapêutico , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peroxidase/metabolismo , Substâncias Protetoras/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
16.
J Phys Chem A ; 122(46): 9128-9134, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30285444

RESUMO

Various neural networks, including a single layer neural network (SLNN), a deep neural network (DNN) with multilayers, and a convolution neural network (CNN) have been developed and investigated to predict multiple molecular properties simultaneously. The data set of this work contains∼134 kilo molecules and their 15 properties (including rotational constant A, B, and C, dipole moment, isotropic polarizability, energy of HOMO, energy of LUMO, HOMO-LUMO gap energy, electronic spatial extent, zero point vibrational energy, internal energy at 0 K, internal energy at 298.15 K, enthalpy at 298.15 K, free energy at 298.15 K, and heat capacity at 298.15 K) at the hybrid density functional theory (DFT) level from the QM9 database. Coulomb matrix (CM) converted from the database representing every molecule uniquely and its eigenvalue are respectively used as the input of machine learning. The accuracies of predictions have been compared among SLNN, DNN and CNN by analyzing their mean absolute errors (MAEs). Using eigenvalues as input, both SLNN and DNN can give higher accuracy for the prediction of specific energy properties ( U0, U, H, and G). For the prediction of all 15 molecular properties at a time, DNN with a 3-layers network exhibits the best results using the full CM as input. The number of layers in DNN play a key role in the prediction of multiple molecular properties simultaneously. This work may provide possibility and guidance for the selection of different neural networks and input data forms for prediction and validation of multiple parameters according to different needs.

17.
Luminescence ; 32(7): 1233-1239, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28569434

RESUMO

A coumarin-benzopyrylium (CB) platform has been developed for the colorimetric and fluorogenic detection of bisulfite. The proposed probe utilizes coumarin as the fluorophore and positively charged benzopyrylium as the reaction site. The method employs the nucleophilic addition of bisulfite to the benzopyrylium moiety of CB to inactivate the electron-deficient oxonium ion. The driving force for photo-induced electron transfer is considerably diminished, thereby promoting the emission intensity of the coumarin fluorophore. The fluorescence intensity at 510 nm is linear with bisulfite concentration over a range of 0.2-7.5 µM with a detection limit of 42 nM (3δ). CB shows a rapid response (within 30 s) and high selectivity and sensitivity for bisulfite. Preliminary studies show that CB has great potential for bisulfite detection in real samples and in living cells.


Assuntos
Benzopiranos/química , Corantes Fluorescentes/química , Sulfitos/análise , Ânions/análise , Benzopiranos/síntese química , Linhagem Celular , Colorimetria/métodos , Cumarínicos/química , Corantes Fluorescentes/síntese química , Análise de Alimentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência
18.
J Am Chem Soc ; 138(4): 1359-65, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26777119

RESUMO

The development of highly active, universal, and stable inexpensive electrocatalysts/cocatalysts for hydrogen evolution reaction (HER) by morphology and structure modulations remains a great challenge. Herein, a simple self-template strategy was developed to synthesize hollow Co-based bimetallic sulfide (MxCo3-xS4, M = Zn, Ni, and Cu) polyhedra with superior HER activity and stability. Homogenous bimetallic metal-organic frameworks are transformed to hollow bimetallic sulfides by solvothermal sulfidation and thermal annealing. Electrochemical measurements and density functional theory computations show that the combination of hollow structure and homoincorporation of a second metal significantly enhances the HER activity of Co3S4. Specifically, the homogeneous doping in Co3S4 lattice optimizes the Gibbs free energy for H* adsorption and improves the electrical conductivity. Impressively, hollow Zn0.30Co2.70S4 exhibits electrocatalytic HER activity better than most of the reported nobel-metal-free electrocatalysts over a wide pH range, with overpotentials of 80, 90, and 85 mV at 10 mA cm(-2) and 129, 144, and 136 mV at 100 mA cm(-2) in 0.5 M H2SO4, 0.1 M phosphate buffer, and 1 M KOH, respectively. It also exhibits photocatalytic HER activity comparable to that of Pt cocatalyst when working with organic photosensitizer (Eosin Y) or semiconductors (TiO2 and C3N4). Furthermore, this catalyst shows excellent stability in the electrochemical and photocatalytic reactions. The strategy developed here, i.e., homogeneous doping and self-templated hollow structure, provides a way to synthesize transition metal sulfides for catalysis and energy conversion.

19.
Chemphyschem ; 17(23): 3974-3984, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27662599

RESUMO

A density functional theory (DFT) analysis was conducted on the hydrogenation of 2-alkyl-anthraquinone (AQ), including 2-ethyl-9,10-anthraquinone (eAQ) and 2-ethyl-5,6,7,8-tetrahydro-9,10-anthraquinone (H4 eAQ), to the corresponding anthrahydroquinone (AQH2 ) over a Pd6 H2 cluster. Hydrogenation of H4 eAQ is suggested to be more favorable than that of eAQ owing to a higher adsorption energy of the reactant (H4 eAQ), lower barrier of activation energy, and smaller desorption energy of the target product (2-ethyl-5,6,7,8-tetrahydro-9,10-anthrahydroquinone, H4 eAQH2 ). For the most probable reaction routes, the energy barrier of the second hydrogenation step of AQ is circa 8 kcal mol-1 higher than that of the first step. Electron transfer of these processes were systematically investigated. Facile electron transfer from Pd6 H2 cluster to AQ/AQH intermediate favors the hydrogenation of C=O. The electron delocalization over the boundary aromatic ring of AQ/AQH intermediate and the electron-withdrawing effect of C=O are responsible for the electron transfer. In addition, a pathway of the electron transfer is proposed for the adsorption and subsequent hydrogenation of AQ on the surface of Pd6 H2 cluster. The electron transfers from the abstracted H atom (reactive H) to a neighbor Pd atom (PdH ), and finally goes to the carbonyl group through the C4 atom of AQ aromatic ring (C4 ).

20.
J Am Chem Soc ; 137(8): 2975-83, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25655589

RESUMO

Defects are critically important for metal oxides in chemical and physical applications. Compared with the often studied oxygen vacancies, engineering metal vacancies in n-type undoped metal oxides is still a great challenge, and the effect of metal vacancies on the physiochemical properties is seldom reported. Here, using anatase TiO2, the most important and widely studied semiconductor, we demonstrate that metal vacancies (VTi) can be introduced in undoped oxides easily, and the presence of VTi results in many novel physiochemical properties. Anatase Ti0.905O2 was synthesized using solvothermal treatment of tetrabutyl titanate in an ethanol-glycerol mixture and then thermal calcination. Experimental measurements and DFT calculations on cell lattice parameters show the unstoichiometry is caused by the presence of VTi rather than oxygen interstitials. The presence of VTi changes the charge density and valence band edge of TiO2, and an unreported strong EPR signal at g = 1.998 presents under room temperature. Contrary to normal n-type and nonferromagnetic TiO2, Ti-defected TiO2 shows inherent p-type conductivity with high charge mobility, and room-temperature ferromagnetism stronger than Co-doped TiO2 nanocrystalline. Moreover, Ti-defected TiO2 shows much better photocatalytic performance than normal TiO2 in H2 generation (4.4-fold) and organics degradation (7.0-fold for phenol), owing to the more efficient charge separation and transfer in bulk and at semiconductor/electrolyte interface. Metal-defected undoped oxides represent a unique material; this work demonstrates the possibility to fabricate such material in easy and reliable way and thus provides new opportunities for multifunctional materials in chemical and physical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA