Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Biol Chem ; : 107499, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944125

RESUMO

Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver - α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mTORC1, another ErbB3 downstream effector STAT3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mTORC1 and STAT3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.

2.
Mol Cell ; 66(1): 141-153.e6, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388439

RESUMO

Mitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner. Celastrol promotes Nur77 translocation from the nucleus to mitochondria, where it interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase important for inflammatory signaling. The interaction is mediated by an LxxLL motif in TRAF2 and results not only in the inhibition of TRAF2 ubiquitination but also in Lys63-linked Nur77 ubiquitination. Under inflammatory conditions, ubiquitinated Nur77 resides at mitochondria, rendering them sensitive to autophagy, an event involving Nur77 interaction with p62/SQSTM1. Together, our results identify Nur77 as a critical intracellular target for celastrol and unravel a mechanism of Nur77-dependent clearance of inflamed mitochondria to alleviate inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Triterpenos/farmacologia , Ubiquitinação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Anti-Inflamatórios/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Triterpenos Pentacíclicos , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/genética , Transfecção , Triterpenos/metabolismo
3.
BMC Biol ; 21(1): 197, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735649

RESUMO

BACKGROUND: The maturation of microRNAs (miRNAs) successively undergoes Drosha, Dicer, and Argonaute -mediated processing, however, the intricate regulations of the individual miRNA maturation are largely unknown. Retinoid x receptor alpha (RXRα) belongs to nuclear receptors that regulate gene transcription by binding to DNA elements, however, whether RXRα binds to miRNAs to exert physiological functions is not known. RESULTS: In this work, we found that RXRα directly binds to the precursor of miR-103 (pre-miR-103a-2) via its DNA-binding domain with a preferred binding sequence of AGGUCA. The binding of RXRα inhibits the processing of miR-103 maturation from pre-miR-103a-2. Mechanistically, RXRα prevents the nuclear export of pre-miR-103a-2 for further processing by inhibiting the association of exportin-5 with pre-miR-103a-2. Pathophysiologically, the negative effect of RXRα on miR-103 maturation correlates to the positive effects of RXRα on the expression of Dicer, a target of miR-103, and on the inhibition of breast cancer. CONCLUSIONS: Our findings unravel an unexpected role of transcription factor RXRα in specific miRNA maturation at post-transcriptional level through pre-miRNA binding, and present a mechanistic insight regarding RXRα role in breast cancer progression.


Assuntos
MicroRNAs , Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição , Proteínas Argonautas , MicroRNAs/genética
4.
J Biol Chem ; 298(12): 102665, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334626

RESUMO

The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.


Assuntos
Glucagon , Receptores de Glucagon , Animais , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Hiperplasia , RNA Mensageiro
5.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770929

RESUMO

Prostate adenocarcinoma (PRAD) is the most frequent malignancy, and is the second leading cause of death due to cancer in men. Thus, new prognostic biomarkers and drug targets for PRAD are urgently needed. As we know, nuclear receptor Nur77 is important in cancer development and changes in the tumor microenvironment; whereas, the function of Nur77 in PRAD remains to be elucidated. The TCGA database was used to explore the Nur77 expression and its role in the prognosis of PRAD. It was shown that Nur77 was down regulated in PRAD, and low Nur77 expression was correlated with advanced clinical pathologic characteristics (high grade, histological type, age) and poor prognosis. Furthermore, key genes screening was examined by univariate Cox analysis and Kaplan-Meier survival. Additionally, Nur77 was closely related to immune infiltration and some anti-tumor immune functions. The differentially expressed genes (DEGs) were presented by protein-protein interaction (PPI) network analysis. Therefore, the expression level of Nur77 might help predict the survival of PRAD cases, which presents a new insight and a new target for the treatment of PRAD. In vitro experiments verified that natural product malayoside targeting Nur77 exhibited significant therapeutic effects on PRAD and largely induced cell apoptosis by up-regulating the expression of Nur77 and its mitochondrial localization. Taken together, Nur77 is a prognostic biomarker for patients with PRAD, which may refresh the profound understanding of PRAD individualized treatment.


Assuntos
Adenocarcinoma , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Neoplasias da Próstata , Humanos , Masculino , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Biomarcadores , Prognóstico , Próstata , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
6.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4981-4992, 2023 Sep.
Artigo em Zh | MEDLINE | ID: mdl-37802840

RESUMO

This study constructed a nano-drug delivery system, A3@GMH, by co-delivering the stapled anoplin peptide(Ano-3, A3) with the light-harvesting material graphene oxide(GO), and evaluated its oncolytic immunotherapy effect on triple-negative breast cancer(TNBC). A3@GMH was prepared using an emulsion template method and its physicochemical properties were characterized. The in vivo and in vitro photothermal conversion abilities of A3@GMH were investigated using an infrared thermal imager. The oncoly-tic activity of A3@GMH against TNBC 4T1 cells was evaluated through cell counting kit-8(CCK-8), lactate dehydrogenase(LDH) release, live/dead cell staining, and super-resolution microscopy. The targeting properties of A3@GMH on 4T1 cells were assessed using a high-content imaging system and flow cytometry. In vitro and in vivo studies were conducted to investigate the antitumor mechanism of A3@GMH in combination with photothermal therapy(PTT) through inducing immunogenic cell death(ICD) in 4T1 cells. The results showed that the prepared A3@GMH exhibited distinct mesoporous and coated structures with an average particle size of(308.9±7.5) nm and a surface potential of(-6.79±0.58) mV. The encapsulation efficiency and drug loading of A3 were 23.9%±0.6% and 20.5%±0.5%, respectively. A3@GMH demonstrated excellent photothermal conversion ability and biological safety. A3@GMH actively mediated oncolytic features such as 4T1 cell lysis and LDH release, as well as ICD effects, and showed enhanced in vitro antitumor activity when combined with PTT. In vivo, A3@GMH efficiently induced ICD effects with two rounds of PTT, activated the host's antitumor immune response, and effectively suppressed tumor growth in 4T1 tumor-bearing mice, achieving an 88.9% tumor inhibition rate with no apparent toxic side effects. This study suggests that the combination of stapled anoplin peptide and PTT significantly enhances the oncolytic immunotherapy for TNBC and provides a basis for the innovative application of anti-tumor peptides derived from TCM in TNBC treatment.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Peptídeos Catiônicos Antimicrobianos , Imunoterapia/métodos , Linhagem Celular Tumoral , Fototerapia/métodos , Nanopartículas/química
7.
Biochem Biophys Res Commun ; 591: 118-123, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35007835

RESUMO

3-chyomotrypsin like protease (3CLpro) has been considered as a promising target for developing anti-SARS-CoV-2 drugs. Herein, about 6000 compounds were analyzed by high-throughput screening using enzyme activity model, and Merbromin, an antibacterial agent, was identified as a potent inhibitor of 3CLpro. Merbromin strongly inhibited the proteolytic activity of 3CLpro but not the other three proteases Proteinase K, Trypsin and Papain. Michaelis-Menten kinetic analysis showed that Merbromin was a mixed-type inhibitor of 3CLpro, due to its ability of increasing the KM and decreasing the Kcat of 3CLpro. The binding assays and molecular docking suggested that 3CLpro possessed two binding sites for Merbromin. Consistently, Merbromin showed a weak binding to the other three proteases. Together, these findings demonstrated that Merbromin is a selective inhibitor of 3CLpro and provided a scaffold to design effective inhibitors of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Merbromina/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Sítios de Ligação , COVID-19/prevenção & controle , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Cinética , Merbromina/química , Merbromina/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia , Ressonância de Plasmônio de Superfície/métodos
8.
Mar Drugs ; 20(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547883

RESUMO

Six new citreoviridins (citreoviridins J-O, 1-6) and twenty-two known compounds (7-28) were isolated from the deep-sea-derived Penicillium citreonigrum MCCC 3A00169. The structures of the new compounds were determined by spectroscopic methods, including the HRESIMS, NMR, ECD calculations, and dimolybdenum tetraacetate-induced CD (ICD) experiments. Citreoviridins J-O (1-6) are diastereomers of 6,7-epoxycitreoviridin with different chiral centers at C-2-C-7. Pyrenocine A (7), terrein (14), and citreoviridin (20) significantly induced apoptosis for HeLa cells with IC50 values of 5.4 µM, 11.3 µM, and 0.7 µM, respectively. To be specific, pyrenocine A could induce S phase arrest, while terrein and citreoviridin could obviously induce G0-G1 phase arrest. Citreoviridin could inhibit mTOR activity in HeLa cells.


Assuntos
Penicillium , Humanos , Células HeLa , Linhagem Celular Tumoral , Penicillium/química , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular
9.
Psychol Health Med ; 27(2): 403-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33971765

RESUMO

This study aimed to explore which age group out of the patients in quarantine wards with novel coronavirus pneumonia is the most susceptible to anxiety. The data of 32 Covid-19 patients isolated in the quarantine wards of the second Infectious Diseases Department of Baoding Hospital and 71 Covid-19 patients in Tangshan City Infectious Disease Hospital from January 24th to March 5th, 2020, a total of 103 patients, were analyzed. Among these patients, 97 isolated patients were scored with a self-rating anxiety scale (SAS) score seven days after quarantine, and the correlation between age and score was analyzed. These 97 isolated patients were then divided into three groups according to age: group A (up to 35 years old), group B (36-60 years), and group C (over 60 years). One-way analysis of variance was used to compare the scores among groups. The Q-test was used for pairwise comparison.P < 0.05 was considered statistically significant.There was a negative correlation between age and SAS score in isolated Covid-19 patients, and the differences in the score among groups were statistically significant. Patients under 35 years old were more prone to anxiety when they were isolated for seven days. Isolated patients aged up to 35 years old need more attention from quarantine medical staff, communication should be strengthened, and psychological intervention from psychotherapists should be given if necessary.


Assuntos
COVID-19 , Quarentena , Adulto , Idoso , Ansiedade/epidemiologia , Ansiedade/psicologia , COVID-19/epidemiologia , Humanos , Quarentena/psicologia , SARS-CoV-2 , Inquéritos e Questionários
10.
Anal Bioanal Chem ; 413(3): 945-953, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33210177

RESUMO

Fluorophore-antibody conjugates with high photobleaching resistance, high chemical stability, and Fc-specific attachment is a great advantage for immunofluorescence imaging. Here, an Fc-binding protein (Z-domain) carrying a photo-cross-linker (p-benzoylphenylalanine, Bpa) fused with enhanced green fluorescent protein (EGFP), namely photoactivatable ZBpa-EGFP recombinant, was directly generated using the aminoacyl-tRNA synthetase/suppressor tRNA technique without any further modification. By employing the photoactivatable ZBpa-EGFP, an optimal approach was successfully developed which enabled EGFP to site-selectively and covalently attach to native antibody (IgG) with approximately 90% conjugation efficiency. After characterizing the Fc-specific and covalent manner of the EGFP-photoconjugated antibody, its excellent photobleaching resistance for immunofluorescence imaging was demonstrated in a model study by monitoring the toll-like receptor 4 (TLR4) expression in HepG2 cells. The proposed approach here for the preparation of a novel fluorescent antibody is available and reliable, which would play an important role in fluorescence immunoassay, and is expected to be extended to the generation of other biomolecule-photoconjugated antibodies, such as other fluorescent proteins for multiplex immunofluorescence imaging or reporter enzymes for highly sensitive enzyme immunoassays.Graphical abstract.


Assuntos
Proteínas de Fluorescência Verde/química , Fragmentos Fc das Imunoglobulinas/química , Microscopia de Fluorescência/métodos , Anticorpos Monoclonais/química , Citometria de Fluxo , Células Hep G2 , Humanos , Proteínas Recombinantes de Fusão/química
11.
Biochem Biophys Res Commun ; 530(1): 160-166, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828280

RESUMO

Rosiglitazone is a ligand of peroxisome proliferation-activated receptor gamma (PPARγ). However, it exerts biological activities and therapeutic effects through both PPARγ-dependent and independent mechanisms. In this study, we defined that rosiglitazone was also a ligand of retinoid X receptor alpha (RXRα) and displayed RXRα-dependent activities. We found that rosiglitazone directly bound to the ligand binding domain (LBD) of RXRα and induced RXRα/LBD tetramerization. Rosiglitazone inhibited the agonist-induced transcriptional activity of RXRα homodimers and heterodimers likely through inhibiting RXRα homo- and hetero-dimerization. In acute promyelocytic leukemia (APL) NB4 cells, rosiglitazone inhibited cell proliferation and induced cell differentiation, resulting from inhibiting RXRα/PML-RARα complex formation and down-regulating PML-RARα. Together, our study identified RXRα as a novel target of rosiglitazone and RXRα mediating the anti-APL activity of rosiglitazone.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Multimerização Proteica/efeitos dos fármacos , Receptor X Retinoide alfa/metabolismo , Rosiglitazona/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Leucemia Promielocítica Aguda/metabolismo
12.
J Cell Mol Med ; 23(1): 155-166, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30370662

RESUMO

Matriptase is an epithelia-specific membrane-anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor-1 (HAI-1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI-1 complex formation determines the intensity and duration of matriptase activity. 3-Cl-AHPC, 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid, is an adamantly substituted retinoid-related molecule and a ligand of retinoic acid receptor γ (RARγ). 3-Cl-AHPC is of strong anti-cancer effect but with elusive mechanisms. In our current study, we show that 3-Cl-AHPC time- and dose- dependently induces matriptase/HAI-1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3-Cl-AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3-Cl-AHPC inhibits matriptase-mediated cleavage of pro-HGF through matriptase/HAI-1 complex induction, resulting in the suppression of pro-HGF-stimulated signalling and cell scattering. Although 3-Cl-AHPC binds to RARγ, its induction of matriptase/HAI-1 complex is not RARγ dependent. Together, our data demonstrates that 3-Cl-AHPC down-regulates matriptase activity through induction of matriptase/HAI-1 complex formation in a RARγ-independent manner, providing a mechanism of 3-Cl-AHPC anti-cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI-1 complex induction using small molecules.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/farmacologia , Cinamatos/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Serina Endopeptidases/metabolismo , Adamantano/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , Complexos Multiproteicos/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/genética , Receptores do Ácido Retinoico/metabolismo , Serina Endopeptidases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor gama de Ácido Retinoico
13.
Mol Pharm ; 16(2): 480-488, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-29995422

RESUMO

Bexarotene, an agonist of retinoid X receptor alpha (RXRα), has been shown to increase the expression of apoE, ABCA1, and ABCG1 by activating RXR/LXR and RXR/PPAR heterodimers, resulting in amyloid ß (Aß)-protein clearance in the brain of an Alzheimer's disease (AD) mouse model and reversal of mouse cognitive deficits. Nitrostyrene derivative Z-10 is the first identified nitro-ligand of RXRα. We hypothesized that Z-10 and its derivatives have the similar effect as bexarotene. A series of Z-10 derivatives were synthesized by introducing methoxyl, hydroxyl, and methoxy groups in 2- or 4-position of naphthalene ring, respectively. Our reporter gene assays showed that the derivatives with substituted groups of methyl and methoxyl in position 2 were more potent to activate Gal4-DBD/RXRα-LBD and RXRα homodimer as well as RXRα heterodimers than the corresponding 4-substituted derivatives. The derivatives with hydroxyl substitution in either 2- or 4-position failed to activate RXRα. Consistently, the derivatives with stronger potency of RXRα activation had higher RXRα binding affinity. Z-10 and its 2-ethyoxyl substituted derivative Z-36 reduced Aß plaques in both hippocampus and cortex of AD mouse model significantly, of which Z-36 had stronger efficacy. This may due to the stronger ability of Z-36 than Z-10 in activating RXR/LXR and RXR/PPAR heterodimers and inducing ABCA1 and ABCG1 expressions. Thus, the 2- rather than 4-position was the better site for Z-10 modification as to RXRα transactivation, and Z-36 is an optimized derivative of Z-10 as to reducing Aß plaques in AD mouse model.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Naftalenos/uso terapêutico , Nitrocompostos/uso terapêutico , Placa Amiloide/tratamento farmacológico , Receptor X Retinoide alfa/metabolismo , Doença de Alzheimer/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Naftalenos/química , Nitrocompostos/química , Placa Amiloide/metabolismo
14.
Bioorg Med Chem Lett ; 29(5): 707-712, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670347

RESUMO

The orphan nuclear receptor Nur77 (also known as TR3 or nerve growth factor-induced clone B NGFI-B) functions as a nuclear transcription factor in the regulation of target gene expression and plays a critical role in the regulation of differentiation, proliferation, apoptosis, and survival of many different cell types. Recent studies demonstrate that Nur77 also involves many important physiological and pathological processes including cancer, inflammation and immunity, cardiovascular diseases, and bone diseases. Our previous studies showed that cardiac glycosides could induce the expression of Nur77 protein and its translocation from the nucleus to the cytoplasm and subsequent targeting to mitochondria, leading to apoptosis of cancer cells. In order to probe the Nur77 protein inducting pathway, we designed and synthesized a series of novel biotinylated cardiac glycosides from ß-Antiarin and α-Antiarin, two typical cardiac glycosides from the plant of Antiaris toxicaria. The induction of Nur77 protein expression of these biotinylated cardiac glycosides and their inhibitory effects on NIH-H460 cancer cell proliferation were evaluated. Results displayed that some biotinylated cardiac glycosides could significantly induce the expression of Nur77 protein comparable with their parent compounds ß-Antiarin and α-Antiarin. Also, their streptavidin binding activities were evaluated. Among them, biotinylated cardiac glycosides P4b and P5a exhibited significant effect on the induction of Nur77 expression along with high binding capacity with streptavidin, suggesting that they can be used as probes for probing Nur77 protein inducting pathway.


Assuntos
Biotina/química , Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/síntese química , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Animais , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Sondas Moleculares
15.
Mar Drugs ; 17(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893778

RESUMO

Five new ergostanes, penicisteroids D-H (1-5), were isolated from the liquid culture of the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475, along with 27 known compounds. The structures of the new steroids were established mainly on the basis of extensive analysis of 1D and 2D NMR as well as HRESIMS data. Moreover, the absolute configurations of 1 were confirmed unambiguously by the single-crystal X-ray crystallography. Compounds 2 and 4⁻7 showed moderate antiproliferative effects selectively against 12 different cancer cell lines with IC50 values of around 5 µM. Compounds 2 and 6, potent RXRα binders with Kd values of 13.8 and 12.9 µM, respectively, could induce apoptosis by a Retinoid X Receptor (RXR)-α-dependent mechanism by regulating RXRα transcriptional expression and promoting the poly-ADP-ribose polymerase (PARP) cleavage. Moreover, they could inhibit proliferation by cell cycle arrest at the G0/G1 phase.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Organismos Aquáticos/química , Ergosterol/farmacologia , Penicillium/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Ergosterol/análogos & derivados , Ergosterol/química , Ergosterol/isolamento & purificação , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Receptor X Retinoide alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Bioorg Med Chem Lett ; 27(15): 3359-3364, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633895

RESUMO

Cardiac glycosides show anticancer activities and their deoxy-sugar chains are vital for their anticancer effects. In order to study the structure-activity relationship (SAR) of cardiac glycosides toward cancers and get more potent anticancer agents, a series of MeON-neoglycosides of digoxigenin was synthesized and evaluated. First, ten 6-deoxy- and 2,6-dideoxy-d-glucopyranosyl donors were synthesized starting from methyl α-d-glucopyranoside and 2-deoxy-d-glucose. Meanwhile, the digoxigenin was obtained by acidic hydrolysis of commercially available digoxin as glycosyl acceptor. Then, a 22-member MeON-neoglycoside library of digoxigenin was successfully synthesized by neoglycosylation method. Finally, the induction of Nur77 expression and its translocation from the nucleus to cytoplasm together with cytotoxicity of these MeON-neoglycosides were evaluated. The SAR analysis revealed that C3 glycosylation is required for their induction of Nur77 expression. Moreover, some MeON-neoglycosides (2b and 8b) could significant induce the expression of Nur77 and its translocation from the nucleus to cytoplasm. However, these compounds showed no inhibitory effects on the proliferation of cancer cells, suggesting that they may not induce apoptosis of NIH-H460 cancer cells and their underlying potential and application toward cancer cells deserves future study.


Assuntos
Antineoplásicos/farmacologia , Digoxigenina/farmacologia , Glucose/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Digoxigenina/síntese química , Digoxigenina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glucose/análogos & derivados , Glucose/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
17.
J Pathol ; 238(3): 457-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26564988

RESUMO

Nur77, an immediate-early response gene, participates in a wide range of biological functions. Its human homologue, NUR77, is known by several names and has the HGNC-approved gene symbol NR4A1. However, the role of Nur77 in inflammatory bowel disease (IBD) and its underlying mechanisms remain elusive. Here, using public data from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) on the most recent genome-wide association studies (GWAS) for ulcerative colitis (UC) and Crohn's disease (CD), we found that genetic variants of the NUR77 gene are associated with increased risk for both UC and CD. Accordingly, Nur77 expression was significantly reduced in colon tissues from patients with UC or CD and mice treated with DSS. Nur77 deficiency increased the susceptibility of mice to DSS-induced experimental colitis and prevented intestinal recovery, whereas treatment with cytosporone B (Csn-B), an agonist for Nur77, significantly attenuated excessive inflammatory response in the DSS-induced colitis mouse model. Mechanistically, NUR77 acts as a negative regulator of TLR-IL-1R signalling by interacting with TRAF6. This interaction prevented auto-ubiquitination and oligomerization of TRAF6 and subsequently inhibited NF-κB activation and pro-inflammatory cytokine production. Taken together, our GWAS-based analysis and in vitro and in vivo studies have demonstrated that Nur77 is an important regulator of TRAF6/TLR-IL-1R-initiated inflammatory signalling, and loss of Nur77 may contribute to the development of IBD, suggesting Nur77 as a potential target for the prevention and treatment of IBD.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores de Interleucina-1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Adulto , Idoso , Animais , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Fenilacetatos/farmacologia , Estudos Prospectivos , Transdução de Sinais/fisiologia
18.
Acta Pharmacol Sin ; 36(1): 102-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25434990

RESUMO

Retinoid X receptor-α (RXRα), a unique member of the nuclear receptor superfamily, represents an intriguing and unusual target for pharmacologic interventions and therapeutic applications in cancer, metabolic disorders and neurodegenerative diseases. Despite the fact that the RXR-based drug Targretin (bexarotene) is currently used for treating human cutaneous T-cell lymphoma and the fact that RXRα ligands (rexinoids) show beneficial effects in the treatment of cancer and diseases, the therapeutic potential of RXRα remains unexplored. In addition to its conventional transcription regulation activity in the nucleus, RXRα can act in the cytoplasm to modulate important biological processes, such as mitochondria-dependent apoptosis, inflammation, and phosphatidylinositol 3-kinase (PI3K)/AKT-mediated cell survival. Recently, new small-molecule-binding sites on the surface of RXRα have been identified, which mediate the regulation of the nongenomic actions of RXRα by a class of small molecules derived from the nonsteroidal anti-inflammatory drug (NSAID) Sulindac. This review discusses the emerging roles of the nongenomic actions of RXRα in the RXRα signaling network, and their possible implications in cancer, metabolic and neurodegenerative disorders, as well as our current understanding of RXRα regulation by targeting alternate binding sites on its surface.


Assuntos
Sítios de Ligação/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Receptor X Retinoide alfa/metabolismo , Animais , Humanos , PPAR gama/metabolismo
19.
Carcinogenesis ; 35(12): 2660-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25187486

RESUMO

Coumarins are plant-derived natural products with a broad range of known pharmacological activities including anticancer effects. However, the molecular mechanisms by which this class of promising compounds exerts their anticancer effects remain largely unknown. We report here that a furanocoumarin named apaensin could effectively induce apoptosis of cancer cells through its activation of Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Apoptosis induction by apaensin in cancer cells was suppressed by chemical inhibitors of JNK and p38 MAPK. Inhibition of the expression of orphan nuclear receptor Nur77 by small interfering RNA (siRNA) approach also abrogated the death effect of apaensin. Molecular analysis demonstrated that JNK activation was required for the nuclear export of Nur77, a known apoptotic event in cancer cells. Although p38 MAPK activation was not involved in Nur77 nuclear export, it was essential for Nur77 mitochondrial targeting through induction of Nur77 interaction with Bcl-2, which is also known to convert Bcl-2 from an antiapoptotic to a proapoptotic molecule. Together, our results identify a new natural product that targets orphan nuclear receptor Nur77 through its unique activation of JNK and p38 MAPK and provide insight into the complex regulation of the Nur77-Bcl-2 apoptotic pathway.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Furocumarinas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Angelica/química , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunoprecipitação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Microscopia de Fluorescência , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA