Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 611
Filtrar
1.
Nature ; 599(7886): 673-678, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732895

RESUMO

Immune exclusion predicts poor patient outcomes in multiple malignancies, including triple-negative breast cancer (TNBC)1. The extracellular matrix (ECM) contributes to immune exclusion2. However, strategies to reduce ECM abundance are largely ineffective or generate undesired outcomes3,4. Here we show that discoidin domain receptor 1 (DDR1), a collagen receptor with tyrosine kinase activity5, instigates immune exclusion by promoting collagen fibre alignment. Ablation of Ddr1 in tumours promotes the intratumoral penetration of T cells and obliterates tumour growth in mouse models of TNBC. Supporting this finding, in human TNBC the expression of DDR1 negatively correlates with the intratumoral abundance of anti-tumour T cells. The DDR1 extracellular domain (DDR1-ECD), but not its intracellular kinase domain, is required for immune exclusion. Membrane-untethered DDR1-ECD is sufficient to rescue the growth of Ddr1-knockout tumours in immunocompetent hosts. Mechanistically, the binding of DDR1-ECD to collagen enforces aligned collagen fibres and obstructs immune infiltration. ECD-neutralizing antibodies disrupt collagen fibre alignment, mitigate immune exclusion and inhibit tumour growth in immunocompetent hosts. Together, our findings identify a mechanism for immune exclusion and suggest an immunotherapeutic target for increasing immune accessibility through reconfiguration of the tumour ECM.


Assuntos
Colágeno/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Matriz Extracelular/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Evasão Tumoral , Animais , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Receptor com Domínio Discoidina 1/deficiência , Receptor com Domínio Discoidina 1/genética , Modelos Animais de Doenças , Matriz Extracelular/imunologia , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Imunocompetência/imunologia , Imunoterapia , Camundongos , Linfócitos T/citologia , Linfócitos T/imunologia , Neoplasias de Mama Triplo Negativas/terapia
2.
Am J Respir Cell Mol Biol ; 71(3): 332-342, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38709251

RESUMO

An increased intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel, termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i increase in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of the store-operated Ca2+ channel. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, antiinflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to monocrotaline (MCT)-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that: 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries and the PASMCs of MCT-PH rats; 2) knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats; 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model; and 4) SH decreased MCT-enhanced SOCE, [Ca2+]i, and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.


Assuntos
Proliferação de Células , Hipertensão Pulmonar , Monocrotalina , Miócitos de Músculo Liso , Proteína ORAI1 , Proteína ORAI2 , Artéria Pulmonar , Sulfitos , Animais , Monocrotalina/toxicidade , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Sulfitos/farmacologia , Ratos , Masculino , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Proteína ORAI2/metabolismo , Ratos Sprague-Dawley , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Alcanos
3.
J Biol Chem ; 299(11): 105259, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717699

RESUMO

The four-subunit negative elongation factor (NELF) complex mediates RNA polymerase II (Pol II) pausing at promoter-proximal regions. Ablation of individual NELF subunits destabilizes the NELF complex and causes cell lethality, leading to the prevailing concept that NELF-mediated Pol II pausing is essential for cell proliferation. Using separation-of-function mutations, we show here that NELFB function in cell proliferation can be uncoupled from that in Pol II pausing. NELFB mutants sequestered in the cytoplasm and deprived of NELF nuclear function still support cell proliferation and part of the NELFB-dependent transcriptome. Mechanistically, cytoplasmic NELFB physically and functionally interacts with prosurvival signaling kinases, most notably phosphatidylinositol-3-kinase/AKT. Ectopic expression of membrane-tethered phosphatidylinositol-3-kinase/AKT partially bypasses the role of NELFB in cell proliferation, but not Pol II occupancy. Together, these data expand the current understanding of the physiological impact of Pol II pausing and underscore the multiplicity of the biological functions of individual NELF subunits.


Assuntos
Proteínas Proto-Oncogênicas c-akt , RNA Polimerase II , Citoplasma/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Camundongos
4.
BMC Genomics ; 25(1): 488, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755552

RESUMO

BACKGROUND: Phosphorus plays a key role in plant adaptation to adversity and plays a positive role in the yield and quality formation of apples. Genes of the SPX domain-containing family are widely involved in the regulation of phosphorus signalling networks. However, the mechanisms controlling phosphorus deficiency are not completely understood in self-rooted apple stock. RESULTS: In this study, 26 members of the apple SPX gene family were identified by genome-wide analysis, and further divided into four subfamilies (SPX, SPX-MFS, SPX-EXS, and SPX-RING) based on their structural features. The chromosome distribution and gene duplications of MdSPXs were also examined. The promoter regions of MdSPXs were enriched for multiple biotic/abiotic stresses, hormone responses and typical P1BS-related elements. Analysis of the expression levels of 26 MdSPXs showed that some members were remarkably induced when subjected to low phosphate (Pi) stress, and in particular MdSPX2, MdSPX3, and MdPHO1.5 exhibited an intense response to low Pi stress. MdSPX2 and MdSPX3 showed significantly divergent expression levels in low Pi sensitive and insensitive apple species. Protein interaction networks were predicted for 26 MdSPX proteins. The interaction of MdPHR1 with MdSPX2, MdSPX3, MdSPX4, and MdSPX6 was demonstrated by yeast two-hybrid assay, suggesting that these proteins might be involved in the Pi-signaling pathway by interacting with MdPHR1. CONCLUSION: This research improved the understanding of the apple SPX gene family and contribute to future biological studies of MdSPX genes in self-rooted apple stock.


Assuntos
Evolução Molecular , Malus , Família Multigênica , Fósforo , Proteínas de Plantas , Estresse Fisiológico , Malus/genética , Malus/metabolismo , Estresse Fisiológico/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Regiões Promotoras Genéticas , Duplicação Gênica , Mapas de Interação de Proteínas
5.
BMC Plant Biol ; 24(1): 511, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844870

RESUMO

The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.


Assuntos
Espécies Introduzidas , Mikania , Árvores , Mikania/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo
6.
Small ; : e2405080, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073300

RESUMO

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

7.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35514190

RESUMO

MOTIVATION: Accurate identification of proteins interacted with drugs helps reduce the time and cost of drug development. Most of previous methods focused on integrating multisource data about drugs and proteins for predicting drug-target interactions (DTIs). There are both similarity connection and interaction connection between two drugs, and these connections reflect their relationships from different perspectives. Similarly, two proteins have various connections from multiple perspectives. However, most of previous methods failed to deeply integrate these connections. In addition, multiple drug-protein heterogeneous networks can be constructed based on multiple kinds of connections. The diverse topological structures of these networks are still not exploited completely. RESULTS: We propose a novel model to extract and integrate multi-type neighbor topology information, diverse similarities and interactions related to drugs and proteins. Firstly, multiple drug-protein heterogeneous networks are constructed according to multiple kinds of connections among drugs and those among proteins. The multi-type neighbor node sequences of a drug node (or a protein node) are formed by random walks on each network and they reflect the hidden neighbor topological structure of the node. Secondly, a module based on graph neural network (GNN) is proposed to learn the multi-type neighbor topologies of each node. We propose attention mechanisms at neighbor node level and at neighbor type level to learn more informative neighbor nodes and neighbor types. A network-level attention is also designed to enhance the context dependency among multiple neighbor topologies of a pair of drug and protein nodes. Finally, the attribute embedding of the drug-protein pair is formulated by a proposed embedding strategy, and the embedding covers the similarities and interactions about the pair. A module based on three-dimensional convolutional neural networks (CNN) is constructed to deeply integrate pairwise attributes. Extensive experiments have been performed and the results indicate GCDTI outperforms several state-of-the-art prediction methods. The recall rate estimation over the top-ranked candidates and case studies on 5 drugs further demonstrate GCDTI's ability in discovering potential drug-protein interactions.


Assuntos
Algoritmos , Redes Neurais de Computação , Desenvolvimento de Medicamentos , Interações Medicamentosas , Aprendizagem
8.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622592

RESUMO

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Assuntos
Ciclofilina A , Dieta Hiperlipídica , Ferroptose , Animais , Ratos , Ciclofilina A/metabolismo , Miocárdio/metabolismo , Obesidade/metabolismo
9.
Exp Eye Res ; 248: 110093, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277098

RESUMO

Keratoconus (KC) is a progressive, multifactorial and ectatic corneal disorder that characterized by steepening thinning of the cornea. It was previously demonstrated that oxidative stress has a strong link with KC progression. However, the molecular mechanism underlying oxidative stress response in KC remains unclear. Hence, the present study analyzed the heterogeneity of response of corneal stromal cells (CSCs) to oxidative stress in order to further illustrate how oxidative shape the pathophysiology of KC. Single-cell transcriptomics analysis revealed that CSCs demonstrated significant higher oxidative stress score in the KC group compared to the Ctrl group. The expression of oxidative markers verified by experiments illustrated elevated oxidative stress levels and insufficient antioxidant levels in CSCs of KC. In further single-cell transcriptomics analysis, we identified CYR61 to distinguish different subgroups of CSCs responding to oxidative stress. The cornea stroma cells in KC could be differentiated into CYR61high cells and CYR61low cells. Of note, the CYR61high cells showed lower score in collagen production process and higher score in collagen catabolic process. Further experiments illustrated that CYR61 was elevated in KC and associated with collagen production.

10.
FASEB J ; 37(3): e22797, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753405

RESUMO

Cardiac fibrosis is a common pathological manifestation in multiple cardiovascular diseases and often results in myocardial stiffness and cardiac dysfunctions. LncRNA (long noncoding RNA) participates in a number of pathophysiological processes. However, its role in cardiac fibrosis remains unclear. The purpose of this study was to investigate the role and molecular mechanism of MetBil in regulating cardiac fibrosis. Our data showed that METTL3 binding lncRNA (MetBil) was significantly increased both in fibrotic tissue following myocardial infarction (MI) in mice and in cardiac fibroblasts (CFs) exposed to TGF-ß1 (20 ng/mL) or 20% FBS. Overexpression of MetBil augmented collagen deposition, CF proliferation and activation while silencing MetBil exhibited the opposite effects. Importantly, heterozygous knockout of MetBil alleviated cardiac fibrosis and improved cardiac function after MI. RNA pull-down and RNA-binding protein immunoprecipitation assay showed that METTL3 is a direct downstream target of MetBil; consistently, MetBil and METTL3 were co-localized in both the nucleus and cytoplasm of CFs. Interestingly, MetBil regulated METTL3 expression at protein level, but not mRNA level, in ubiquitin-proteasome pathway. Enforced expression of METTL3 canceled the antifibrotic effects of silencing MetBil reflected by increased collagen production, CF proliferation and activation. Most notably, the m6A-modified fibrosis-regulated genes mediated by METTL3 are profoundly involved in the regulation of MetBil in the cardiac fibrosis following MI. Our study reveals that MetBil as a novel regulator of fibrosis promotes cardiac fibrosis via interacting with METTL3 and regulating the expression of the methylated fibrosis-associated genes, providing a new intervening target for fibrosis-associated cardiac diseases.


Assuntos
Cardiopatias , Infarto do Miocárdio , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , Infarto do Miocárdio/metabolismo , Fibrose , Metiltransferases/genética , Metiltransferases/metabolismo , Colágeno/genética , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA