Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
BMC Plant Biol ; 24(1): 726, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080516

RESUMO

BACKGROUND: Pb stress, a toxic abiotic stress, critically affects maize production and food security. Although some progress has been made in understanding the damage caused by Pb stress and plant response strategies, the regulatory mechanisms and resistance genes involved in the response to lead stress in crops are largely unknown. RESULTS: In this study, to uncover the response mechanism of maize to Pb stress phenotype, physiological and biochemical indexes, the transcriptome, and the metabolome under different concentrations of Pb stress were combined for comprehensive analysis. As a result, the development of seedlings and antioxidant system were significantly inhibited under Pb stress, especially under relatively high Pb concentrations. Transcriptome analysis revealed 3559 co-differentially expressed genes(co-DEG) under the four Pb concentration treatments (500 mg/L, 1000 mg/L, 2000 mg/L, and 3000 mg/L Pb(NO3)2), which were enriched mainly in the GO terms related to DNA-binding transcription factor activity, response to stress, response to reactive oxygen species, cell death, the plasma membrane and root epidermal cell differentiation. Metabolome analysis revealed 72 and 107 differentially expressed metabolites (DEMs) under T500 and T2000, respectively, and 36 co-DEMs. KEGG analysis of the DEMs and DEGs revealed a common metabolic pathway, namely, flavonoid biosynthesis. An association study between the flavonoid biosynthesis-related DEMs and DEGs revealed 20 genes associated with flavonoid-related metabolites, including 3 for genistin and 17 for calycosin. CONCLUSION: In summary, the study reveals that flavonoid metabolism plays an important role in response to Pb stress in maize, which not only provides genetic resources for the genetic improvement of maize Pb tolerance in the future but also enriches the theoretical basis of the maize Pb stress response.


Assuntos
Flavonoides , Chumbo , Plântula , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Flavonoides/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transcriptoma , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica
2.
Chemistry ; 30(9): e202303708, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088216

RESUMO

The study on structure-property relationship has been a significant focus in the field of organic molecular luminescence. In the present work, three chiral binaphthyl-based triphenylethylene (HTPE) derivatives were prepared through condensation reactions. Despite their similar structures, these compounds exhibited distinct luminescent properties. Diphenylmethane-derived HTPE displayed dual-state emissions, characterized by dual-wavelength emissions which were insensitive to the polarity of solvents. The dual emissions in solution state could be attributed to the different locally excited (LE) excitons. However, upon aggregation, two stable conformers were generated, probably leading to different emission peaks. In contrast, dibenzocycloheptadiene-derived HTPE aggregates showed only a single emission peak. Surprisingly, fluorene-derived HTPE exhibited obvious luminescence in neither solution nor aggregate states due to inherent π-π interactions. These conclusions were substantiated by X-ray analysis, spectroscopic analysis, and theory calculations. Application studies demonstrated that fluorescence on/off switches could be achieved through exposure to acetone. More importantly, trace amounts of acetone could be detected using luminescent materials in both organic and aqueous phases with a detection limit of 0.08 %. Thus, this work not only presents a strategy for designing chiral triphenylethylene fluorophores but also provides valuable information for dual wavelength emissions resulting from two stable conformations.

3.
Theor Appl Genet ; 137(10): 233, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325221

RESUMO

KEY MESSAGE: This study mapped and screened three candidate genes related to kernel dehydration in maize. The slow development rate of maize kernels during later stages leads to high kernel moisture content at harvest, posing a challenge for mechanized maize harvesting in China. This study utilized a recombinant inbred line population derived from Zheng 58 (slow dehydration) and PH6WC (fast dehydration) as parents. After four years of trait investigation and analysis, 25 quantitative trait loci (QTLs) associated with kernel dehydration rate and moisture content were identified, with six QTLs showing a significant contribution value exceeding 10% in the phenotype. Furthermore, a comparison was made between the QTLs identified in this study and those from previous research on maize kernel moisture content and dehydration rate, followed by screening through the omics analysis of the parental lines. Three candidate genes related to kernel dehydration rate were identified, primarily involving carbohydrate metabolism, energy metabolism processes (Zm00001d014030 and Zm00001d006476), and stimulus resistance (Zm00001d040113). These findings provide valuable insights to assist and guide future breeding efforts for mechanical harvesting of maize.


Assuntos
Mapeamento Cromossômico , Fenótipo , Locos de Características Quantitativas , Sementes , Zea mays , Zea mays/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Desidratação/genética , Genes de Plantas , Melhoramento Vegetal
4.
J Org Chem ; 89(10): 7216-7224, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38693864

RESUMO

An organoselenium-catalyzed C2,3-diarylation of unprotected N-H indoles with electron-rich aromatics has been developed. This one-pot multicomponent tandem cross-dehydrogenation coupling reaction allows for the incorporation of two different aromatic groups to indoles. More importantly, this approach offers significant advantages, including a high atom and step economy, eliminating the need for prepreparation of the reaction substrates, streamlining the synthetic process and enhancing its practicality. Overall, this organoselenium-catalyzed C2,3-diarylation reaction presents an efficient and versatile strategy for the functionalization of indole derivatives.

5.
J Org Chem ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323184

RESUMO

Carbene-catalyzed [3 + 3] annulation of enals and vinyl sulfoxonium ylides has been demonstrated. This method efficiently synthesizes a range of 2-sulfenylidene-3-cyclohexen-1-ones with high atom economy. Notably, the presence of the sulfoxonium ylide moiety in the obtained products significantly enhances their potential for further synthetic transformations.

6.
J Org Chem ; 89(17): 12822-12826, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39163408

RESUMO

An N-heterocyclic carbene-catalyzed [4 + 2] annulation of ß,γ-unsaturated α-keto esters and phenylacetate esters was developed for the direct and efficient construction of 2-pyrones. This approach provides a practical synthesis pathway for various 3,4,6-trisubstituted 2-pyrones in moderate to good yields and features broad substrate scope and good functional group tolerance. Moreover, the products can also be readily transformed to naphthalene and acylamide.

7.
Physiol Plant ; 176(5): e14547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39327540

RESUMO

Lead (Pb) exposure can induce molecular changes in plants, disrupt metabolites, and impact plant growth. Therefore, it is essential to comprehend the molecular mechanisms involved in Pb tolerance in plants to evaluate the long-term environmental consequences of Pb exposure. This research focused on maize as the test subject to study variations in biomass, root traits, genes, and metabolites under hydroponic conditions under Pb conditions. The findings indicate that high Pb stress significantly disrupts plant growth and development, leading to a reduction in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activities by 17.12, 5.78, and 19.38%, respectively. Conversely, Pb stress led to increase malondialdehyde (MDA) contents, ultimately impacting the growth of maize. The non-targeted metabolomics analysis identified 393 metabolites categorized into 12 groups, primarily consisting of organic acids and derivatives, organ heterocyclic compounds, lipids and lipid-like molecules and benzenoids. Further analysis indicated that Pb stress induced an accumulation of 174 metabolites mainly enriched in seven metabolic pathways, for example phenylpropanoid biosynthesis and flavonoid biosynthesis. Transcriptome analysis revealed 1933 shared differentially expressed genes (DEGs), with 1356 upregulated and 577 downregulated genes across all Pb treatments. Additionally, an integrated analysis identified several DEGs and differentially accumulated metabolites (DAMs), including peroxidase, alpha-trehalose, and D-glucose 6-phosphate, which were linked to cell wall biosynthesis. These findings imply the significance of this pathway in Pb detoxification. This comprehensive investigation, employing multiple methodologies, provides a detailed molecular-level insight into maize's response to Pb stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Chumbo , Metabolômica , Plântula , Zea mays , Zea mays/genética , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/fisiologia , Chumbo/toxicidade , Chumbo/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transcriptoma/genética , Perfilação da Expressão Gênica , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética , Catalase/metabolismo , Catalase/genética , Peroxidase/metabolismo , Peroxidase/genética
8.
Physiol Plant ; 176(2): e14275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566267

RESUMO

Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.


Assuntos
Oryza , Oryza/fisiologia , Perfilação da Expressão Gênica , Estresse Salino , Plântula/fisiologia , Tolerância ao Sal/genética
9.
Plant J ; 109(4): 980-991, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34822726

RESUMO

The ability of immature maize (Zea mays) embryos to form embryonic calluses (ECs) is highly genotype dependent, which limits transgenic breeding development in maize. Here, we report the association map-based cloning of ZmSAUR15 using an association panel (AP) consisting of 309 inbred lines with diverse formation abilities for ECs. We demonstrated that ZmSAUR15, which encodes a small auxin-upregulated RNA, acts as a negative effector in maize EC induction. Polymorphisms in the ZmSAUR15 promoter that influence the expression of ZmSAUR15 transcripts modulate the EC induction capacity in maize. ZmSAUR15 is involved in indole-3-acetic acid biosynthesis and cell division in immature embryo-derived callus. The ability of immature embryos to induce EC formation can be improved by the knockout of ZmSAUR15, which consequently increases the callus regeneration efficiency. Our study provides new insights into overcoming the genotypic limitations associated with EC formation and improving genetic transformation in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis , Divisão Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Zea mays/metabolismo
10.
Chemistry ; 29(62): e202301766, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550834

RESUMO

Small organic molecules which can emit fluorescence with tunable dual emission bands are significant for fundamental research and broad applications. In this work, two binaphthyl based arylacrylonitrile derivatives with pyrene and triphenylamine unit (BiNp-Py and BiNp-TPA) were designed and synthesized, respectively, featuring chiral backbone and dual AIE-active cyanostyrene-linked chromophores. Excellent fluorescence emissions in a range of solution and solid states were observed with high quantum yields, indicative of the solvatochromism and mechanochromism. More interestingly, dual emission bands were found and tunable by the water fraction in THF, and speculatively attributed to the balancing of intramolecular charge transfer (ICT) and locally excited (LE) emission in solution and aggregate states. Furthermore, the potential application in anti-counterfeiting ink was also explored, indicating the very low concentration (5 ppm) for sufficient distinguishable vision and small colour migration (28 nm) for printing on the filter. The present work provides a new strategy to design organic luminescent structure having widely fluorescent emissions in dual states and a valuable reference for the study of chiral optical materials.

11.
J Org Chem ; 88(21): 15106-15117, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37864558

RESUMO

A metal-free one-pot oxidative cross-dehydrogenation coupling reaction for the formation of C-N/C-C bonds at the C2,3-positions of indoles with azoles and quinoxalinones has been developed. The proposed method has several notable features, including metal-free catalysis, the use of N-H free indoles as substrates, ease of operation, mild reaction conditions, and compatibility with a wide range of substrates.

12.
J Org Chem ; 88(5): 2801-2808, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800292

RESUMO

A simple method for the preparation of imidazo[4,5-b]indole-2-thiones from 2-alkynylnitrobenzenes and thioureas is described. In the reaction, a Wittig-like process was triggered by PPh3 and followed by a cyclization step. The products were afforded in yields of 70-98% under mild conditions. Additionally, the 2-alkynylnitrobenzenes were stable and could be prepared via a simple coupling step.

13.
Org Biomol Chem ; 21(34): 6898-6902, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37581413

RESUMO

A structurally diverse set of chiral pyrazolo[3,4-b]pyridin-6-ones was efficiently prepared in excellent yields with excellent enantioselectivities via N-heterocyclic carbene-catalyzed oxidative [3 + 3] annulation of enals with pyrazol-5-amines. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.

14.
J Org Chem ; 87(18): 12424-12433, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36046980

RESUMO

An efficient copper-iodine cocatalyzed intermolecular C-H aminocyanation of indoles with a broad substrate scope has been developed for the first time. This method enables highly step-economic access to 2-amino-3-cyanoindoles in moderate to good yields and provides a complementary strategy for the regioselective difunctionalization of carbon═carbon double bonds of interest in organic synthesis and related areas. Mechanistic studies suggest that these transformations are initiated by iodine-mediated C2-H amination with azoles, followed by copper-catalyzed C3-H cyanation with ethyl cyanoformate.


Assuntos
Indóis , Iodo , Azóis/química , Catálise , Cobre/química , Indóis/química , Iodetos , Iodo/química
15.
J Org Chem ; 86(15): 10360-10367, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34281342

RESUMO

A novel and efficient synthetic method for the preparation of various pyrroloindolines from 2-alkynyl arylazides and thioacetamides was developed. The reaction was carried out in a one-pot process under mild reaction conditions to afford the products in moderate to good yields, which has the potential to be used in organic synthesis.


Assuntos
Paládio , Tioacetamida , Catálise , Técnicas de Química Sintética
16.
Org Biomol Chem ; 19(47): 10403-10407, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842891

RESUMO

A copper-mediated 2,3-difunctionalization of indoles to afford 3-halogenated 2,3'-biindoles is described herein. The protocol uses readily available feedstocks and a naturally abundant copper catalyst system, which allows the regioselective formation of C-C and C-X (X = Cl & Br) bonds in one single operation. Here the copper metal salt serves not only as a catalyst but also as a reactant to provide the source of halogen. This operationally simple procedure avoids the utilization of environmentally unfriendly reagents and displays good functional group compatibility. Noteworthily, the introduction of halogen into molecules would offer great potential for further chemical transformations.

17.
Nanotechnology ; 32(3): 032001, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002887

RESUMO

Supported metal nanostructures are the most extensively studied heterogeneous catalysts, benefiting from easy separation, regeneration and affordable cost. The size of the supported metal species is one of the decisive factors in determining the activity of heterogeneous catalysts. Particularly, the unsaturated coordination environment of metal atoms preferably act as the active centers, minimizing these metal species can significantly boost the specific activity of every single metal atom. Single-atom catalysts/catalysis (SACs), containing isolated metals atomically dispersed on or coordinated with the surface of a support material, represent the ultimate utilization of supported metals and maximize metal usage efficiency. Graphene, a two-dimensional star material, exhibiting extraordinary physical and chemical properties, has been approved as an excellent platform for constructing SACs. When atomically dispersed metal atoms are strongly anchored on the graphene surface, featuring ultra-high surface area and excellent electronic properties, SACs offer a great potential to significantly innovate the conventional heterogeneous catalysis, especially in the field of electrocatalysis. In this review, a detailed discussion of graphene-supported SACs, including preparation approaches, characterization techniques and applications on typical electrocatalytic reactions is provided. The advantages and unique features of graphene-supported SACs as efficient electrocatalysts and the upcoming challenges for improving their performance and further practical applications are also highlighted.

18.
Mol Breed ; 41(12): 75, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37309514

RESUMO

Rice blast is one of the most widespread and devastating diseases in rice production. Tremendous success has been achieved in the identification and characterization of genes and quantitative trait loci (QTLs) conferring seedling blast resistance, however, genetic studies on panicle blast resistance have lagged far behind. In this study, two advanced backcross inbred sister lines (MSJ13 and MSJ18) were obtained in the process of introducing Pigm into C134S and showed significant differences in the panicle blast resistance. One F2 population derived from the crossing MSJ13/MSJ18 was used to QTL mapping for panicle blast resistance using genotyping by sequencing (GBS) method. A total of seven QTLs were identified, including a major QTL qPBR10-1 on chromosome 10 that explains 24.21% of phenotypic variance with LOD scores of 6.62. Furthermore, qPBR10-1 was verified using the BC1F2 and BC1F3 population and narrowed to a 60.6-kb region with six candidate genes predicted, including two genes encoding exonuclease family protein, two genes encoding hypothetical protein, and two genes encoding transposon protein. The nucleotide variations and the expression patterns of the candidate genes were identified and analyzed between MSJ13 and MSJ18 through sequence comparison and RT-PCR approach, and results indicated that ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01268-3.

19.
Ecotoxicol Environ Saf ; 218: 112307, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965778

RESUMO

The leafminer fly, Liriomyza trifolii, is an invasive pest of horticultural and vegetable crops that possesses a robust competitive ability when compared to congeneric species, especially with respect to temperature and insecticide tolerance. Abamectin, which is commonly used to control L. trifolii in the field, was selected as the target insecticide in this study. Our objective was to study the effect of abamectin and high temperature stress on L. trifolii mortality and the expression of genes encoding cytochrome P450 (CYP450s) and heat shock proteins (Hsps) by quantitative real-time reverse transcriptase PCR (qRT-PCR). When L. trifolii was exposed to abamectin followed by exposure to 40 °C (LC50 +HT40), mortality showed a significant increase, whereas exposure to 40 â„ƒ followed by abamectin (HT40+LC50) reduced mortality relative to abamectin or HT40 alone. Expression of three CYP450s in the CYP4 family was highest in the HT40+LC50 treatment, followed by the LC50+HT40 treatment. The expression levels of CYP18A1 (CYP18 family) were not significantly different among treatments, and CYP301A1 (CYP301 family) was only sensitive to temperature (HT40). The expression of five sHsps showed similar expression patterns and were highly responsive to the LC50+HT40 treatment, followed by the HT40 and HT40+LC50 treatments. Based on CYP450s and Hsps expression levels, our findings that suggest that L. trifolii exhibits adaptive cross-tolerance to high temperature and abamectin. This study provides a framework for selecting the most effective application time for abamectin with respect to controlling L. trifolii, which will ultimately reduce the overuse of pesticides.

20.
Pestic Biochem Physiol ; 174: 104826, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838719

RESUMO

Liriomyza trifolii is an invasive leafminer fly that inflicts damage on many horticultural and vegetable crops. In this study, the effects of elevated temperatures on L. trifolii tolerance to insecticides abamectin (AB), monosultap (MO) and a mixture of abamectin and monosultap (AM) were firstly investigated, then five CYP450 genes (LtCYPs) were cloned, and expression patterns and NADPH cytochrome C reductase (NCR) activity in L. trifolii were compared in response to high temperature stress and insecticide exposure. Results showed elevated temperatures induced expression of LtCYP450s, the expression level of LtCYP4g1, LtCYP4g15 and LtCYP301A1 after exposed to different high temperature were significantly up-regulated compared with the control (25 °C), while there was no significant difference in LtCYP4E21 and LtCYP18A1. Under the joint high temperature and insecticide stress, the expression of LtCYP4g15, LtCYP18A1 and LtCYP301A1 was significantly higher under elevated temperatures than that of only under AB exposure. For MO and AM exposure, only 40 °C could induce the expression of LtCYP4g15, LtCYP18A1 and LtCYP301A1. In general, the LtCYPs expression pattern was correlated with increased NCR activity and decreased mortality in response to insecticide exposure under elevated temperatures. These all demonstrated that insecticide tolerance in L. trifolii could be mediated by high temperature. This study improves our understanding of L. trifolii physiology and offers a theoretical context for improved control that ultimately reduces the abuse of insecticides and decreases exposure to non-target organisms.


Assuntos
Dípteros , Inseticidas , Animais , Produtos Agrícolas , Sistema Enzimático do Citocromo P-450/genética , Inseticidas/toxicidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA