RESUMO
The healthy human cornea is a uniquely transparent sensory tissue where immune responses are tightly controlled to preserve vision. The cornea contains immune cells that are widely presumed to be intraepithelial dendritic cells (DCs). Corneal immune cells have diverse cellular morphologies and morphological alterations are used as a marker of inflammation and injury. Based on our imaging of corneal T cells in mice, we hypothesized that many human corneal immune cells commonly defined as DCs are intraepithelial lymphocytes (IELs). To investigate this, we developed functional in vivo confocal microscopy (Fun-IVCM) to investigate cell dynamics in the human corneal epithelium and stroma. We show that many immune cells resident in the healthy human cornea are T cells. These corneal IELs are characterized by rapid, persistent motility and interact with corneal DCs and sensory nerves. Imaging deeper into the corneal stroma, we show that crawling macrophages and rare motile T cells patrol the tissue. Furthermore, we identify altered immune cell behaviors in response to short-term contact lens wear (acute inflammatory stimulus), as well as in individuals with allergy (chronic inflammatory stimulus) that was modulated by therapeutic intervention. These findings redefine current understanding of immune cell subsets in the human cornea and reveal how resident corneal immune cells respond and adapt to chronic and acute stimuli.
Assuntos
Córnea , Epitélio Corneano , Animais , Humanos , Camundongos , Vias Aferentes , Inflamação , Microscopia IntravitalRESUMO
Two-dimensional (2D) materials have garnered significant attention due to their exceptional properties requisite for next-generation electronics, including ultrahigh carrier mobility, superior mechanical flexibility, and unusual optical characteristics. Despite their great potential, one of the major technical difficulties toward lab-to-fab transition exists in the seamless integration of 2D materials with classic material systems, typically composed of three-dimensional (3D) materials. Owing to the self-passivated nature of 2D surfaces, it is particularly challenging to achieve well-defined interfaces when forming 3D materials on 2D materials (3D-on-2D) heterostructures. Here, we comprehensively review recent progress in 3D-on-2D incorporation strategies, ranging from direct-growth- to layer-transfer-based approaches and from non-epitaxial to epitaxial integration methods. Their technological advances and obstacles are rigorously discussed to explore optimal, yet viable, integration strategies of 3D-on-2D heterostructures. We conclude with an outlook on mixed-dimensional integration processes, identifying key challenges in state-of-the-art technology and suggesting potential opportunities for future innovation.
RESUMO
Advanced heterogeneous integration technologies are pivotal for next-generation electronics. Single-crystalline materials are one of the key building blocks for heterogeneous integration, although it is challenging to produce and integrate these materials. Remote epitaxy is recently introduced as a solution for growing single-crystalline thin films that can be exfoliated from host wafers and then transferred onto foreign platforms. This technology has quickly gained attention, as it can be applied to a wide variety of materials and can realize new functionalities and novel application platforms. Nevertheless, remote epitaxy is a delicate process, and thus, successful execution of remote epitaxy is often challenging. Here, we elucidate the mechanisms of remote epitaxy, summarize recent breakthroughs, and discuss the challenges and solutions in the remote epitaxy of various material systems. We also provide a vision for the future of remote epitaxy for studying fundamental materials science, as well as for functional applications.
RESUMO
Age-related cataract (ARC) is regarded as the principal cause of vision impairment among the aged. The regulatory role of long noncoding RNAs (LncRNAs) in ARC remains unclear. The lncRNA maternally expressed gene 3 (MEG3) has been reported to promote ARC progression, and the underlying mechanism was further investigated in this study. Lens epithelium samples were collected to verify the expression of MEG3. Lens epithelial cells (LECs) were treated with H2O2 to mimic microenvironment of ARC in vitro. Cell viability, reactive oxygen species, and ferroptosis were evaluated during the in viro experiments. In the present work, lncRNA MEG3 was highly expressed in ARC group, compared with normal group. MEG3 was induced, cell viability and glutathione peroxidase 4 (GPX4) level were inhibited, and ferroptosis was promoted in H2O2 treated LECs. LncRNA MEG3 silence reversed the effects of H2O2 on viability and ferroptosis in LECs. Thereafter, lncRNA MEG3 was found to bind to PTBP1 for GPX4 degradation. Silencing of GPX4 reversed the regulation of lncRNA MEG3 inhibition in H2O2-treated LECs. To sum up, lncRNA MEG3 exhibited high expression in ARC. In H2O2-induced LECs, inhibition of lncRNA MEG3 accelerated cell viability and repressed ferroptosis by interaction with PTBP1 for GPX4 messenger RNA decay. Targeting lncRNA MEG3 may be a novel treatment of ARC.
RESUMO
BACKGROUND: Grapes are highly valued for their nutritional and economic benefits, and have been widely studied for their biological attributes such as fruit development, quality formation, and stress resistance. One significant threat to grape quality is gray mold, caused by Botrytis cinerea, which can infect the flowers, fruits, leaves, and stems. The quantitative real-time PCR (qRT-PCR), known for its high sensitivity and quantitative accuracy, is an essential tool for analyzing gene expression related to the pathogenesis of gray mold, thereby providing deeper insights into the disease. RESULT: In this study, we aim to identify stable internal reference genes crucial for accurate gene expression analysis via qRT-PCR. Utilizing transcriptome data from grapes under various disease stresses, we identified twelve candidate reference genes with consistently high expression levels. The stability of these genes was assessed through delta-CT, geNorm, NormFinder, BestKeeper, and RefFinder analyses after establishing the cycling thresholds (Ct) in different grape varieties treated with Botrytis cinerea. CONCLUSIONS: Our findings reveal that VIT-17s0000g02750 and VIT-06s0004g04280 exhibit stable expression and are suitable as new reference genes. This foundational work supports further research into the molecular mechanisms of grape biological processes.
Assuntos
Botrytis , Doenças das Plantas , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Vitis , Vitis/microbiologia , Vitis/genética , Botrytis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Regulação da Expressão Gênica de Plantas , TranscriptomaRESUMO
Previous studies suggest a role for inflammation in hepatocarcinogenesis. However, no study has comprehensively evaluated associations between circulating inflammatory proteins and risk of hepatocellular carcinoma (HCC) among the general population. We conducted a nested case-control study in the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS) with 56 pairs of incident HCC cases and controls. External validation was performed in the UK Biobank (34 HCC cases and 48,471 non-HCC controls). Inflammatory protein levels were measured in pre-diagnostic plasma using the Olink® Inflammation Panel. We used conditional logistic regression to calculate multivariable odds ratios (ORs) with 95% confidence intervals (CIs) for associations between a 1-standard deviation (SD) increase in biomarker levels and HCC risk, considering a statistically significant threshold of false discovery rate (FDR)-adjusted p < .05. In the NHS/HPFS, among 70 analyzed proteins with call rates >80%, 15 proteins had significant associations with HCC risk (pFDR < .05). Two proteins (stem cell factor, OR per SD = 0.31, 95% CI = 0.16-0.58; tumor necrosis factor superfamily member 12, OR per SD = 0.51, 95% CI = 0.31-0.85) were inversely associated whereas 13 proteins were positively associated with risk of HCC; positive ORs per SD ranged from 1.73 for interleukin (IL)-10 to 2.35 for C-C motif chemokine-19. A total of 11 proteins were further replicated in the UK Biobank. Seven of the eight selected positively associated proteins also showed positive associations with HCC risk by enzyme-linked immunosorbent assay, with ORs ranging from 1.56 for IL-10 to 2.72 for hepatocyte growth factor. More studies are warranted to further investigate the roles of these observed inflammatory proteins in HCC etiology, early detection, risk stratification, and disease treatment.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/diagnóstico , Reino Unido/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Estados Unidos/epidemiologia , Biomarcadores Tumorais/sangue , Idoso , Adulto , Fatores de Risco , Inflamação/sangue , Estudos de Coortes , SeguimentosRESUMO
Rare monogenic disorders of the primary cilium, termed ciliopathies, are characterized by extreme presentations of otherwise common diseases, such as diabetes, hepatic fibrosis, and kidney failure. However, despite a recent revolution in our understanding of the cilium's role in rare disease pathogenesis, the organelle's contribution to common disease remains largely unknown. Hypothesizing that common genetic variants within Mendelian ciliopathy genes might contribute to common complex diseases pathogenesis, we performed association studies of 16,874 common genetic variants across 122 ciliary genes with 12 quantitative laboratory traits characteristic of ciliopathy syndromes in 452,593 individuals in the UK Biobank. We incorporated tissue-specific gene expression analysis, expression quantitative trait loci, and Mendelian disease phenotype information into our analysis and replicated our findings in meta-analysis. 101 statistically significant associations were identified across 42 of the 122 examined ciliary genes (including eight novel replicating associations). These ciliary genes were widely expressed in tissues relevant to the phenotypes being studied, and eQTL analysis revealed strong evidence for correlation between ciliary gene expression levels and laboratory traits. Perhaps most interestingly, our analysis identified different ciliary subcompartments as being specifically associated with distinct sets of phenotypes. Taken together, our data demonstrate the utility of a Mendelian pathway-based approach to genomic association studies, challenge the widely held belief that the cilium is an organelle important mainly in development and in rare syndromic disease pathogenesis, and provide a framework for the continued integration of common and rare disease genetics to provide insight into the pathophysiology of human diseases of immense public health burden.
Assuntos
Cílios/genética , Ciliopatias/genética , Doenças Genéticas Inatas/genética , Doenças Raras/genética , Cílios/patologia , Ciliopatias/patologia , Estudos de Associação Genética , Doenças Genéticas Inatas/patologia , Predisposição Genética para Doença , Genômica , Humanos , Fenótipo , Locos de Características Quantitativas/genética , Doenças Raras/patologiaRESUMO
In this study, a three-step strategy including electrochemical cathode deposition, self-oxidation, and hydrothermal reaction is applied to prepare the LiMn2 O4 nanosheets on carbon cloth (LMOns@CC) as a binder-free cathode in a hybrid capacitive deionization (CDI) cell for selectively extracting lithium from salt-lake brine. The binder-free LMOns@CC electrodes are constructed from dozens of 2D LiMn2 O4 nanosheets on carbon cloth substrates, resulting in a uniform 2D array of highly ordered nanosheets with hierarchical nanostructure. The charge/discharge process of the LMOns@CC electrode demonstrates that visible redox peaks and high pseudocapacitive contribution rates endow the LMOns@CC cathode with a maximum Li+ ion electrosorption capacity of 4.71 mmol g-1 at 1.2 V. Moreover, the LMOns@CC electrode performs outstanding cycling stability with a high-capacity retention rate of 97.4% and a manganese mass dissolution rate of 0.35% over ten absorption-desorption cycles. The density functional theory (DFT) theoretical calculations verify that the Li+ selectivity of the LMOns@CC electrode is attributed to the greater adsorption energy of Li+ ions than other ions. Finally, the selective extraction performance of Li+ ions in natural Tibet salt lake brine reveals that the LMOns@CC has selectivity ( α Mg 2 + Li + $\alpha _{{\mathrm{Mg}}^{2 + }}^{{\mathrm{Li}}^ + }$ = 7.48) and excellent cycling stability (100 cycles), which would make it a candidate electrode for lithium extraction from salt lakes.
RESUMO
PURPOSE: Defining how the in vivo immune status of peripheral tissues is shaped by the external environment has remained a technical challenge. We recently developed Functional in vivo confocal microscopy (Fun-IVCM) for dynamic, longitudinal imaging of corneal immune cells in living humans. This study investigated the effect of seasonal-driven environmental factors on the morphodynamic features of human corneal immune cell subsets. DESIGN: Longitudinal, observational clinical study. PARTICIPANTS: Sixteen healthy participants (aged 18-40 years) attended 2 visits in distinct seasons in Melbourne, Australia (Visit 1, November-December 2021 [spring-summer]; Visit 2, April-June 2022 [autumn-winter]). METHODS: Environmental data were collected over each period. Participants underwent ocular surface examinations and corneal Fun-IVCM (Heidelberg Engineering). Corneal scans were acquired at 5.5 ± 1.5-minute intervals for up to 5 time points. Time-lapse Fun-IVCM videos were created to analyze corneal immune cells, comprising epithelial T cells and dendritic cells (DCs), and stromal macrophages. Tear cytokines were analyzed using a multiplex bead-based immunoassay. MAIN OUTCOME MEASURES: Difference in the density, morphology, and dynamic parameters of corneal immune cell subsets over the study periods. RESULTS: Visit 1 was characterized by higher temperature, lower humidity, and higher air particulate and pollen levels compared with Visit 2. Clinical ocular surface parameters and the density of immune cell subsets were similar across visits. At Visit 1 , corneal epithelial DCs were larger, with a lower dendrite probing speed (0.38 ± 0.21 vs. 0.68 ± 0.33 µm/min; P < 0.001) relative to Visit 2; stromal macrophages were more circular and had less dynamic activity (Visit 1, 7.2 ± 1.9 vs. Visit 2, 10.3 ± 3.7 dancing index; P < 0.001). Corneal T cell morphodynamics were unchanged across periods. Basal tear levels of interleukin 2 and CXCL10 were relatively lower during spring-summer. CONCLUSIONS: This study identifies that the in vivo morphodynamics of innate corneal immune cells (DCs, macrophages) are modified by environmental factors, but such effects are not evident for adaptive immune cells (T cells). The cornea is a potential in vivo window to investigate season-dependent environmental influences on the human immune system. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Assuntos
Imunidade Adaptativa , Córnea , Imunidade Inata , Estações do Ano , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Adolescente , Imunidade Inata/fisiologia , Córnea/imunologia , Células Dendríticas/imunologia , Microscopia Confocal , Citocinas/metabolismo , Lágrimas , Linfócitos T/imunologia , Microscopia Intravital , Macrófagos/imunologia , Voluntários SaudáveisRESUMO
BACKGROUND: Balloon pulmonary angioplasty (BPA) improves the prognosis of chronic thromboembolic pulmonary hypertension (CTEPH). Right ventricle (RV) is an important predictor of prognosis in CTEPH patients. 2D-speckle tracking echocardiography (2D-STE) can evaluate RV function. This study aimed to evaluate the effectiveness of BPA in CTEPH patients and to assess the value of 2D-STE in predicting outcomes of BPA. METHODS: A total of 76 patients with CTEPH underwent 354 BPA sessions from January 2017 to October 2022. Responders were defined as those with mean pulmonary artery pressure (mPAP) ≤ 30 mmHg or those showing ≥ 30% decrease in pulmonary vascular resistance (PVR) after the last BPA session, compared to baseline. Logistic regression analysis was performed to identify predictors of BPA efficacy. RESULTS: BPA resulted in a significant decrease in mPAP (from 50.8 ± 10.4 mmHg to 35.5 ± 11.9 mmHg, p < 0.001), PVR (from 888.7 ± 363.5 dyn·s·cm-5 to 545.5 ± 383.8 dyn·s·cm-5, p < 0.001), and eccentricity index (from 1.3 to 1.1, p < 0.001), and a significant increase in RV free wall longitudinal strain (RVFWLS: from 15.7% to 21.0%, p < 0.001). Significant improvement was also observed in the 6-min walking distance (from 385.5 m to 454.5 m, p < 0.001). After adjusting for confounders, multivariate analysis showed that RVFWLS was the only independent predictor of BPA efficacy. The optimal RVFWLS cutoff value for predicting BPA responders was 12%. CONCLUSIONS: BPA was found to reduce pulmonary artery pressure, reverse RV remodeling, and improve exercise capacity. RVFWLS obtained by 2D-STE was an independent predictor of BPA outcomes. Our study may provide a meaningful reference for interventional therapy of CTEPH.
Assuntos
Angioplastia com Balão , Hipertensão Pulmonar , Embolia Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/terapia , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/terapia , Remodelação Ventricular , Ecocardiografia , Doença Crônica , Artéria Pulmonar/diagnóstico por imagemRESUMO
High harmonic generation (HHG) have received significant attention for the exploration of material properties and ultrafast dynamics. However, the lack of consideration for couplings between HHG and other quasiparticles, such as phonons, has been impeding the understanding of many-body interactions in HHG. Here, we reveal the many-body electron-phonon mechanism in the quasiparticle-coupled strong-field dynamics by investigating the nonadiabatic (NA) coherent-phonon-coupled HHG. Coherent phonons are revealed to effectively affect HHG via the adiabatic band modulation induced by phonon deformation effects and the NA and nonequilibrium distribution of photocarriers in multiple valleys. The adiabatic and NA mechanisms leave their fingerprint via influencing the phonon period and phase delay in the oscillation of HHG intensity, both of which are experimentally measurable. Investigation of these quantities enables the direct probing of the electron-phonon interaction in materials.
RESUMO
Layered transition metal oxides are highly promising host materials for K ions, owing to their high theoretical capacities and appropriate operational potentials. To address the intrinsic issues of KxMnO2 cathodes and optimize their electrochemical properties, a novel P3-type oxide doped with carefully chosen cost-effective, electrochemically active and multi-functional elements is proposed, namely K0.57Cu0.1Fe0.1Mn0.8O2. Compared to the pristine K0.56MnO2, its reversible specific is increased from 104 to 135â mAh g-1. In addition, the Cu and Fe co-doping triples the capacity under high current densities, and contributes to long-term stability over 500â cycles with a capacity retention of 68 %. Such endeavor holds the potential to make potassium-ion batteries particularly competitive for application in sustainable, low-cost, and large-scale energy storage devices. In addition, the cathode is also extended for sodium storage. Facilitated by the interlayer K ions that protect the layered structure from collapsing and expand the diffusion pathway for sodium ions, the cathode shows a high reversible capacity of 144â mAh g-1, fast kinetics and a long lifespan over 1000â cycles. The findings offer a novel pathway for the development of high-performance and cost-effective sodium-ion batteries.
RESUMO
BACKGROUND: The projected increase in the prevalence of dementia has sparked interest in understanding the pathophysiology and underlying causal factors in its development and progression. Identifying novel biomarkers in the preclinical or prodromal phase of dementia may be important for predicting early disease risk. Applying metabolomic techniques to prediagnostic samples in prospective studies provides the opportunity to identify potential disease biomarkers. OBJECTIVE: The objective of this systematic review was to summarize the evidence on the associations between metabolite markers and risk of dementia and related dementia subtypes in human studies with a prospective design. DESIGN: We searched PubMed, PsycINFO, and Web of Science databases from inception through December 8, 2023. Thirteen studies (mean/median follow-up years: 2.1-21.0 y) were included in the review. RESULTS: Several metabolites detected in biological samples, including amino acids, fatty acids, acylcarnitines, lipid and lipoprotein variations, hormones, and other related metabolites, were associated with risk of developing dementia. Our systematic review summarized the adjusted associations between metabolites and dementia risk; however, our findings should be interpreted with caution because of the heterogeneity across the included studies and potential sources of bias. Further studies are warranted with well-designed prospective cohort studies that have defined study populations, longer follow-up durations, the inclusion of additional diverse biological samples, standardization of techniques in metabolomics and ascertainment methods for diagnosing dementia, and inclusion of other related dementia subtypes. CONCLUSIONS: This study contributes to the limited systematic reviews on metabolomics and dementia by summarizing the prospective associations between metabolites in prediagnostic biological samples with dementia risk. Our review discovered additional metabolite markers associated with the onset of developing dementia and may help aid in the understanding of dementia etiology. The protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (https://www.crd.york.ac.uk/prospero/; registration ID: CRD42022357521).
Assuntos
Demência , Metabolômica , Humanos , Biomarcadores , Demência/epidemiologia , Demência/etiologia , Estudos ProspectivosRESUMO
BACKGROUND: Evidence for prevention strategies of radiotherapy (RT)-related injury in patients with nasopharyngeal carcinoma (NPC) was lacking. Understanding the dynamic alterations in the cerebral white matter (WM) microstructure after RT may be helpful. PURPOSE: To investigate the dynamic alterations in the whole brain WM microstructure in patients with NPC in the 12 months after RT using multishell diffusion MRI (MS-dMRI). STUDY TYPE: Single-center longitudinal study. POPULATION: A total of 28 treatment-naïve patients with pathologically confirmed NPC (age: 39.68 ± 8.93 years, 11 female) and 20 healthy controls (age: 40.65 ± 9.76 years, 7 female). FIELD STRENGTH/SEQUENCES: A 3 T, MS-dMRI using a single-shot echo planar imaging sequence. ASSESSMENT: MS-dMRI was acquired at baseline for the NPC patients and healthy controls, at 0-3 (acute, AC), 6 (early delayed, ED) and 12 months (late delayed, LD) after RT for the NPC patients. The mean and maximum radiation doses to the temporal lobe were acquired. The quality of images was reviewed. MS-dMRI was analyzed using tract-based spatial statistics (TBSS). The presentations of injury were defined by the findings of TBSS. STATISTICAL TESTS: Chi-square, t tests, repeated ANOVA, and Spearman-rank correlation analysis were used. P < 0.05 was considered to be statistically significant. RESULTS: TBSS showed two WM injuries (injuries 1 and 2). Injury 1 emerged in the ED phase in the bilateral temporal poles and persisted throughout the ED and LD phases. Injury 2 developed from the AC to ED phase in the bilateral hemisphere and partially recovered in the LD phase. In the ED and LD phases, the multiple diffusion metrics were well correlated (r > 0.5 or <-0.5) with the RT dose, especially in the WM tracts in the temporal lobes. DATA CONCLUSION: Disparate WM injuries were observed in NPC patients after RT. The injuries may be primarily or secondarily induced by radiation. Injury 1 may be irreversible, while injury 2 seems to partially recover. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 4.
Assuntos
Lesões Encefálicas , Neoplasias Nasofaríngeas , Lesões por Radiação , Substância Branca , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Substância Branca/patologia , Estudos Longitudinais , Neoplasias Nasofaríngeas/patologia , Imagem de Difusão por Ressonância Magnética , Lesões Encefálicas/patologiaRESUMO
Graphitic carbon nitride (g-C3N4), since the pioneering work on visible-light photocatalytic water splitting in 2009, has emerged as a highly promising advanced material for environmental and energetic applications, including photocatalytic degradation of pollutants, photocatalytic hydrogen generation, and carbon dioxide reduction. Due to its distinctive two-dimensional structure, excellent chemical stability, and distinctive optical and electrical properties, g-C3N4 has garnered a considerable amount of interest in the field of biomedicine in recent years. This review focuses on the fundamental properties of g-C3N4, highlighting the synthesis and modification strategies associated with the interfacial structures of g-C3N4-based materials, including heterojunction, band gap engineering, doping, and nanocomposite hybridization. Furthermore, the biomedical applications of these materials in various domains, including biosensors, antimicrobial applications, and photocatalytic degradation of medical pollutants, are also described with the objective of spotlighting the unique advantages of g-C3N4. A summary of the challenges faced and future prospects for the advancement of g-C3N4-based materials is presented, and it is hoped that this review will inspire readers to seek further new applications for this material in biomedical and other fields.
RESUMO
PURPOSE OF REVIEW: Sexual health and sexual function are critical to the wellbeing of cisgender, transgender, and gender diverse populations. To date, there has been only limited patient-focused evaluation of sexual function in transgender and gender diverse patients at several stages in their gender-affirming medical care. There remains a need to better understand the impact of gender affirming medical and surgical therapy on sexual health, and to develop evidence-based treatments to address sexual dysfunction when present. RECENT FINDINGS: The impact of gender-affirming hormone therapy on sexual health is complex and evolves over time on treatment. Despite high incidences of complications, major genital gender-affirming surgeries such as vulvovaginoplasty and penile implant placement after phalloplasty yield high patient satisfaction. While treatments to preserve or restore erections and to improve vaginal lubrication have been trialed based upon literature in cisgender populations, there remains minimal evidence to guide medical treatment of sexual dysfunction ranging from erectile dysfunction to dyspareunia. SUMMARY: There is a continued need for ongoing efforts to develop patient-reported outcome measures and rigorous investigation of sexual health preservation and restoration treatments in transgender and gender diverse populations.
Assuntos
Saúde Sexual , Pessoas Transgênero , Humanos , Masculino , Feminino , Pessoas Transgênero/psicologia , Disfunções Sexuais Fisiológicas/etiologia , Disfunções Sexuais Fisiológicas/terapia , Disfunções Sexuais Fisiológicas/diagnóstico , Disfunções Sexuais Fisiológicas/epidemiologia , Cirurgia de Readequação Sexual/métodos , Cirurgia de Readequação Sexual/efeitos adversos , Procedimentos de Readequação Sexual/métodos , Procedimentos de Readequação Sexual/efeitos adversosRESUMO
The efficient synthesis of the pyrrolo[4,3,2-de]quinoline core of the lymphostin family (compound 1) has been accomplished in 7 steps and 18.6% overall yield, providing an efficient method for the total synthesis and structural modification of the lymphostin family. Compound 1 showed potent inhibitory activities against PI3K/mTOR in the nanomolar range and activity against human colorectal cancer cell lines comparable to that of oxaliplatin, which could be recognized as a novel lead compound for cancer therapy.
Assuntos
Antineoplásicos , Quinolinas , Humanos , Quinolinas/química , Quinolinas/síntese química , Quinolinas/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pirróis/química , Pirróis/síntese química , Pirróis/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
BACKGROUND: Previous studies have shown that visible light (VL), especially blue light (BL), could cause significant skin damage. With the emergence of VL protection products, a harmonization of light protection methods has been proposed, but it has not been widely applied in the Chinese population. OBJECTIVE: Based on this framework, we propose an accurate and simplified method to evaluate the efficacy of BL photoprotection for the Chinese population. METHODS: All subjects (n = 30) were irradiated daily using a blue LED light for four consecutive days. Each irradiation dose was 3/4 MPPD (minimum persistent pigmentation darkening). The skin pigmentation parameters, including L*, M, and ITA°, were recorded. We proposed the blue light protection factor (BPF) metric based on the skin pigmentation parameters to evaluate the anti-blue light efficacies of different products. RESULTS: We found that the level of pigmentation rose progressively and linearly as blue light exposure increased. We proposed a metric, BPF, to reflect the anti-blue light efficacy of products based on the linear changes in skin pigment characteristics following daily BL exposure. Moreover, we discovered that the BPF metric could clearly distinguish the anti-blue light efficacies between two products and the control group, suggesting that BPF is an efficient and simple-to-use metric for anti-blue light evaluation. CONCLUSION: Our study proposed an accurate and simplified method with an easy-to-use metric, BPF, to accurately characterize the anti-blue light efficacies of cosmetic products, providing support for further development of anti-blue light cosmetics.
Assuntos
Luz Azul , Pigmentação da Pele , Humanos , Luz , China , Pele/efeitos da radiação , Raios UltravioletaRESUMO
In modern optics, birefringent materials that can manipulate light polarization play important roles in lasers and information fields. The search for ultraviolet (UV) crystals with large birefringence is the focus of attention in the field of optical materials. In this work, we synthesized two birefringent crystals, C2H12N6C4O4·2H2O and Na2C4O4·3H2O, containing planar π-conjugated [C4O4]2- groups. Attributed to the large structural anisotropy and relatively ordered arrangement of the [C4O4]2- groups, C2H12N6C4O4·2H2O and Na2C4O4·3H2O possess large birefringence of 0.20-0.21 at 1064 nm. Meanwhile, they exhibit short ultraviolet cutoff edges at about 280-300 nm, corresponding to the large band gaps of 4.35 and 4.24 eV, respectively. Using structural analysis and first-principles calculations, the origins of such large birefringence are investigated and discussed. This work provides two potential UV birefringent crystals and prompts the search for novel birefringent materials.
RESUMO
The band gap is one of the significant parameters for nonlinear optical (NLO) materials, which is the key factor in their application band in laser technology. This study reports the synthesis of two rare-earth selenite NLO crystals, namely, RE(HSeO3)(SeO3)(H2O)·(H2O) (RE = Y, Gd), utilizing the hydrothermal technique. The two compounds are isostructural, and both belong to the orthorhombic chiral space group of P212121 and possess three-dimensional structures consisting of two-dimensional rare-earth selenite layers connected by hydrogen bonds (O-H··O). These two compounds exhibit a moderate second harmonic generation intensity of 0.5/0.8 × KDP and wide energy band gaps reaching 4.8 eV. Comprehensive density functional theory analyses based on first-principles were carried out to unravel the relationship between the structural and corresponding properties. This work provides an approach for band gap enlargement in rare-earth selenite systems and is beneficial to the design of future NLO materials.