Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(4): 1795-1802, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241199

RESUMO

Cytokines are essential components of the immune system and are recognized as significant biomarkers. However, detection of a single cytokine is not precise and reliable enough to satisfy the requirements for diagnosis. Herein, we developed a pattern recognition-based method for the multiplexed sensing of cytokines, which involves three-color-emitting boronic acid-decorated carbon dots (BCDs) and arginine-modified titanium carbide (Ti3C2 MXenes) as the sensor array. Initially, the fluorescence signals of the three BCDs were quenched by Ti3C2 MXenes. In the presence of cytokines, the fluorescence intensity of the BCDs was restored or further quenched by different cytokines. The fluorescence response occurs in two steps: first, boronic acid interacts with cis-diol functional groups of cytokines, and second, arginine headgroup selectively interacts with glycans. By exploiting the different competing binding of the BCDs and the cytokines toward Ti3C2 MXenes, seven cytokines and their mixtures can be effectively discriminated at a concentration of 20 ng mL-1. Furthermore, our sensor array demonstrated an excellent performance in classifying human oral cancer saliva samples from healthy individuals with clinically relevant specificity. The noninvasive method offers a rapid approach to cytokine analysis, benefiting early and timely clinical diagnosis and treatment.


Assuntos
Citocinas , Neoplasias Bucais , Humanos , Carbono , Ácidos Borônicos , Neoplasias Bucais/diagnóstico , Arginina
2.
Anal Chem ; 96(8): 3436-3444, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38372258

RESUMO

Cerebral ischemia-reperfusion injury (CIRI), a cause of cerebral dysfunction during cerebral infarction treatment, is closely associated with mitochondrial viscosity and hydrogen peroxide (H2O2). However, the accurate measurement of mitochondrial viscosity and H2O2 levels in CIRI is challenging because of the lack of sufficient selectivity and blood-brain barrier (BBB) penetration of existing monitoring tools related to CIRI, hampering the exploration of the role of mitochondrial viscosity and H2O2 in CIRI. To address this issue, we designed an activatable fluorescent probe, mitochondria-targeting styryl-quinolin-ium (Mito-IQS), with excellent properties including high selectivity, mitochondrial targeting, and BBB penetration, for the visualization of mitochondrial viscosity and H2O2 in the brain. Based on the real-time monitoring capabilities of the probe, bursts of mitochondrial viscosity and H2O2 levels were visualized during CIRI. This probe can be used to monitor the therapeutic effects of butylphthalein treatment. More importantly, in vivo experiments further confirmed that CIRI was closely associated with the mitochondrial viscosity and H2O2 levels. This discovery provides new insights and tools for the study of CIRI and is expected to accelerate the process of CIRI diagnosis, treatment, and drug design.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Peróxido de Hidrogênio , Corantes Fluorescentes , Viscosidade , Mitocôndrias
3.
Langmuir ; 40(4): 2369-2376, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230676

RESUMO

Urinary tract infections (UTIs) have greatly affected human health in recent years. Accurate and rapid diagnosis of UTIs can enable a more effective treatment. Herein, we developed a multichannel sensor array for efficient identification of bacteria based on three antimicrobial agents (vancomycin, lysozyme, and bacitracin) functional gold nanoclusters (AuNCs). In this sensor, the fluorescence intensity of the three AuNCs was quenched to varying degrees by the bacterial species, providing a unique fingerprint for different bacteria. With this sensing platform, seven pathogenic bacteria, different concentrations of the same bacteria, and even bacterial mixtures were successfully differentiated. Furthermore, UTIs can be accurately identified with our sensors in ∼30 min with 100% classification accuracy. The proposed sensing systems offer a rapid, high-throughput, and reliable sensing platform for the diagnosis of UTIs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Ouro , Vancomicina , Bactérias , Espectrometria de Fluorescência
4.
Anal Chem ; 95(23): 8932-8938, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37256919

RESUMO

The aberrantly changed level of homocysteine (Hcy) triggers a variety of pathological symptoms and subsequently Hcy-related diseases. Direct and selective visualization of Hcy in biological systems is pivotal to understanding the pathological functions of Hcy at the molecular level. Herein, a general strategy was developed for the specific fluorescence imaging of Hcy through the combination of dual-binding sites and the introduction of a nitro group at the 6-position of the 7-diethylaminocoumarin fluorophore. Also, a series of novel fluorescent probes were exploited for monitoring Hcy with excellent selectivity, high sensitivity, and far-red/near-infrared fluorescence emission. Furthermore, fluorescence imaging of endogenous Hcy dynamics in living cells and in vivo was achieved, providing direct and solid evidence for the increasement of endogenous Hcy in type 2 diabetes mellitus and Alzheimer's disease. This research will greatly advance the development and understanding of the molecular nexus between the Hcy metabolism cascade and the root causes of diseases related to Hcy.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Cisteína/química , Células HeLa , Imagem Óptica , Corantes Fluorescentes/química
5.
Anal Chem ; 95(14): 5911-5919, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975193

RESUMO

The composition and activity of the gut microbiota are crucial for health management and disease treatment. Herein, we develop a rapid and robust multichannel sensor array via a recognition engineering strategy using antimicrobial agent (vancomycin, bacitracin, and lysozyme) functional gold nanoclusters and gluconamide-modified Ti3C2 MXenes, which provide superior fingerprint patterns to distinguish gut-derived bacteria. The discrimination ability of the sensor array was highly improved via the synergistic recognition between the bacteria and the various antimicrobial agents. Five gut-derived bacteria, including probiotics, neutral, and pathogenic bacteria were clearly differentiated and discriminated from the bacteria mixtures. Furthermore, the sensing system was successfully applied for the accurate classification of human colorectal cancer samples from healthy individuals rapidly (30 min) with clinically relevant specificity. The rapidity, simplicity, and economic cost of this strategy offers a robust platform for gut microbiota analysis.


Assuntos
Microbioma Gastrointestinal , Humanos , Vancomicina
6.
Anal Chem ; 95(49): 18107-18113, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019640

RESUMO

Technological advances and methodological innovations in cell signaling pathway analysis will facilitate progress in understanding biological processes, intervening in diseases, and screening drugs. In this work, an elaborate strategy for visualizing and monitoring the transient receptor potential melastatin 7 (TRPM7)-Mg2+ signaling pathway in living cells was constructed through the logical analysis of upstream mRNA and downstream molecules by two individual DNA sensors. The DNA sensors are constructed by modifying the dye-labeled DNA sequences on the surface of gold nanoparticles. By hybridizing with upstream mRNA, Cy5-modified DNA sensor 1 can detect and silence it simultaneously, outputting a red fluorescence signal. When the upstream mRNA is silenced, the concentration of downstream molecules of Mg2+ will be affected and down-regulated. The FAM-modified DNA sensor 2 detects this change and emits a green fluorescence as a signal. Therefore, the dynamic information on TRPM7 mRNA and the Mg2+-mediated signaling pathway can be successfully obtained by fluorescence imaging methods. Furthermore, the TRPM7 mRNA-Mg2+ signaling pathway also affects cell activity and migratory function through cell scratching and other experiments. More importantly, the proposed sensor also shows potential for screening signaling pathway inhibitors. Our work provides a simple and general strategy for the visualization of signaling pathways, which helps to understand the changes in the physiological activities of cancer cells and the causes of carcinogenesis and is crucial for cancer diagnosis and prognosis.


Assuntos
Nanopartículas Metálicas , Neoplasias , Canais de Cátion TRPM , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , RNA Mensageiro/genética , Ouro/metabolismo , Transdução de Sinais , DNA , Neoplasias/genética
7.
Mol Carcinog ; 62(4): 503-516, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36688673

RESUMO

The role and mechanism of insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) in the metastasis of esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, IGF2BP3 mRNA and protein expression levels were evaluated in ESCC tissues. Small interfering RNAs (siRNAs), plasmid overexpression, and stable lentivirus transfection were used to manipulate intracellular IGF2BP3 expression levels. The role of IGF2BP3 in ESCC tumorigenesis was investigated in vitro and in vivo. IGF2BP3 target transcripts were detected, and the acetylation effect ratios of the IGF2BP3 promoter region by H3K27ac were determined. IGF2BP3 mRNA expression levels were significantly higher in ESCC tissues than in normal esophageal tissues. Increased IGF2BP3 expression levels were detected in node-negative ESCC tissues and correlated with greater lesion depth in ESCC. Overexpression of IGF2BP3 promoted ESCC development in vitro and in vivo, and IGF2BP3 knockdown caused an opposite effect. IGF2BP3 was found to directly bind to the zinc finger E-box-binding homeobox 1 (Zeb1) mRNA, and the downregulation of IGF2BP3 reduced the stability of Zeb1 mRNA. IGF2BP3 induced epithelial-mesenchymal transition in ESCC cells in a Zeb1-dependent manner. IGF2BP3 was transcriptionally activated in ESCC cell lines via H3K27 acetylation. Our results demonstrate that IGF2BP3 plays a vital role in ESCC cell proliferation, invasion, and metastasis and is a potential therapeutic target for treating ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Somatomedinas , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/metabolismo , Transição Epitelial-Mesenquimal/genética , RNA Mensageiro/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Somatomedinas/genética , Somatomedinas/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética
8.
Analyst ; 148(18): 4331-4338, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37547973

RESUMO

The excessive formation of peroxynitrite (ONOO-) in mitochondria has been implicated in various pathophysiological processes and diseases. However, owing to short emission wavelengths and small Stokes shifts, previously reported fluorescent probes pose significant challenges for mitochondrial ONOO- imaging in biological systems. In this study, a near-infrared (NIR) fluorescent probe, denoted as DCO-POT, is designed for the visual monitoring of mitochondrial ONOO-, displaying a remarkable Stokes shift of 170 nm. The NIR fluorophore of DCO-CHO is released by DCO-POT upon the addition of ONOO-, resulting in off-on NIR fluorescence at 670 nm. This phenomenon facilitates the high-resolution confocal laser scanning imaging of ONOO- generated in biological systems. The practical applications of DCO-POT as an efficient fluorescence imaging tool are verified in this study. DCO-POT enables the fluorometric visualization of ONOO- in organelles, cells, and organisms. In particular, ONOO- generation is analyzed during cellular and organism-level (zebrafish) inflammation during ferroptosis and in an Alzheimer's disease mouse model. The excellent visual monitoring performance of DCO-POT in vivo makes it a promising tool for exploring the pathophysiological effects of ONOO-.


Assuntos
Doença de Alzheimer , Ferroptose , Camundongos , Animais , Corantes Fluorescentes/toxicidade , Ácido Peroxinitroso , Peixe-Zebra , Doença de Alzheimer/diagnóstico por imagem , Mitocôndrias , Inflamação , Imagem Óptica/métodos
9.
Biomed Chromatogr ; 37(7): e5521, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36251619

RESUMO

Neurotransmitters (NTs) are endogenous, polar, low-molecular-weight compounds that play multiple pivotal roles in the central nervous system. NTs are involved in communicating information, responding to stress, regulating motor coordination, and allowing interneuronal communication in living organisms. It is essential to determine the distribution of NTs in brain regions to better understand drug dependence and abuse, neurological disorders, psychological disorders, and aging. Monitoring NT levels is also important in diagnosing and avoiding serious illnesses. We here review chromatography-based analytical techniques, including pretreatment methods (e.g., microdialysis and solid-phase microextraction), as well as detection strategies (e.g., MS and electrochemistry), focusing on developments in these techniques over the past 5 years. We then highlight recent advances in electrochemical and fluorescence imaging methods in vivo and the disadvantages and advantages of such technologies, including high spatiotemporal resolution, polymer specificity, and high sensitivity. Finally, we summarize and compare the complementary advantages of chromatography-based analytical techniques and biosensors and discuss trends in the development of NT detection technologies.


Assuntos
Técnicas Biossensoriais , Microextração em Fase Sólida , Neurotransmissores , Encéfalo , Técnicas Biossensoriais/métodos , Polímeros/química
10.
Mikrochim Acta ; 191(1): 49, 2023 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141093

RESUMO

An electrochemical sensor capable of detecting glutathione (GSH) with high sensitivity and selectivity was developed based on the unique novel electroactive silver-based metal organic framework (Ag-MOF). The Ag-MOF obtained by silver nitrate and 1,3,5-benzoic acid (H3BTC) was thoroughly characterized and was modified onto the electrode via facile drop-casting method. The electrochemical response of GSH on the Ag-MOF modified electrode showed a significant reduction in the current signal because the Ag-GSH complex had stronger specific affinity than Ag-H3BTC and resulted in the collapse of the Ag-MOF. This sensor demonstrated an extensive linear dynamic range of 0.1 nM-1 µM, along with the low detection limit of 0.018 nM. Additionally, it exhibited good reproducibility, stability, and resistance to interfering compounds. The Ag-MOF modified electrode demonstrated superior performance attributed to its rapid electron transfer rate, outstanding electrochemical redox activity, and specific recognition/competitive reaction. These factors improved both sensitivity and selectivity. The high anti-interference ability allowed for the selective detection of GSH in intricate surroundings. In the real sample testing, the RSD was lower than 3.1% and the recovery was between 98.1 and 103%. This research highlights the potential of Ag-MOFs in developing electrochemical sensors and their promising applications in determining GSH for food screening and early disease diagnosis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Técnicas Biossensoriais/métodos , Estruturas Metalorgânicas/química , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Glutationa
11.
Anal Chem ; 94(14): 5707-5714, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348336

RESUMO

An electrochemiluminescence (ECL) sensor provides a sensitive and convenient method for early diagnosis of diseases; however, it is still a challenge to develop simple and sensitive sensing platforms based on efficient ECL signals and luminophore groups. Porphyrin-based metal-organic frameworks (MOFs) show great potential in ECL sensing; however, the mechanism and structure-activity relationship, as well as application, are rarely reported. Herein, hydrothermal reactions obtained porphyrin Zr-MOFs (PCN-222) with different specific surface areas, pore sizes, structures, and surface charge states by tuning the reaction time were developed, which served both as the ECL luminophore, coreaction promoter for S2O82-, and a connection in the ECL immunoassay. By progressively controlling the condition of the hydrothermal reaction, PCN-222 with large surface area-abundant micropores can be obtained, which has good conductivity and positively charged surfaces, obtaining excellent ECL performance. The ECL performance and the enhancement mechanism were investigated in detail. Using PCN-222-6h with the best ECL intensity as the immobilization matrix for the aptamer, a highly sensitive and selective assay for thrombin was developed. The decrease of the ECL signal was logarithmically linear with the concentration of thrombin in the range from 50 fg mL-1 to 100 pg mL-1 with a low detection limit of 2.48 fg/mL. This proposed strategy provides a brand new approach for tuning of the structures of MOFs as effective ECL signal probes, thus providing wider possibilities for effective ECL immunoassays in the detection of other biomarkers in diagnosis of diseases.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Porfirinas , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Estruturas Metalorgânicas/química , Trombina , Zircônio/química
12.
Anal Chem ; 94(42): 14642-14651, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36218121

RESUMO

In this work, near-infrared fluorescent silver nanoclusters (Ag NCs) were prepared based on the in situ formed poly methacrylic acid (PMAA) as the template and stabilizer, which is synthesized by methacrylic acid (MAA) and hydroxyl radical (·OH) that is generated by the cascade nanoenzyme reaction of cupric oxide nanoparticles (CuO NPs). CuO NPs possess the intrinsic glutathione-like (GPx-like) and peroxidase-like (POD-like) activities, which can catalyze glutathione (GSH) and O2 to produce hydrogen peroxide (H2O2), and then transform into ·OH. The fluorescence intensity of Ag NCs decreases with the addition of GSH, because the -SH can easily anchor on the surface, resulting in the PMAA leaving the Ag NCs, and the coeffect of GSH and PMAA results in the aggregation to form larger Ag NPs. A good linear relationship between the fluorescence quenching rate and the GSH concentration was found in the range 0.01-40 µM with the detection limit 8.0 nM. The Ag NCs can be applied in the detection of GSH in the serum, as well as bioimaging of endogenous and exogenous GSH in cells with high sensitivity. Moreover, the normal and cancer cells can be distinguished through bioimaging because of the different GSH levels. The new method for the preparation of biocompatible nanoprobe based on the nanozyme tandem catalysis and the in situ formed template can avoid the direct usage of polymers or protein templates that hinder preparation and separation, providing a reliable approach for the synthesis, biosensing, and bioimaging of nanoclusters.


Assuntos
Nanopartículas Metálicas , Prata , Polieletrólitos , Peróxido de Hidrogênio , Radical Hidroxila , Glutationa , Catálise , Peroxidases
13.
Analyst ; 147(21): 4777-4785, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36193725

RESUMO

Electrochemically active oxides play important roles in the fabrication of electrochemical sensing platforms, in which they can be utilized as electrochemical probes or catalysts in electrochemical reactions. Herein, a novel ratiometric electrochemical sensor for uric acid (UA) was developed based on the newly synthesized Cu2O nanocubes with good electrochemical activity combined with boron carbide (B4C) with excellent conductivity. The oxidation peak of Cu2O remained unchanged, which could be used as a reference, while the oxidation peak of UA catalyzed by the modified electrode increased with the concentration of UA. The two signals displayed a large peak-to-peak potential and thus a ratiometric electrochemical sensor for UA was established, which could further reduce the effects of unrelated factors, such as the environment influence. The sensor exhibited good linear ranges of 0.1-100 µM and 100-1000 µM, and showed good sensitivity, selectivity, repeatability, and stability. The sensor was successfully applied in the detection of UA in complex human serum and urine samples.


Assuntos
Técnicas Eletroquímicas , Ácido Úrico , Humanos , Ácido Úrico/urina , Boro , Eletrodos , Óxidos
14.
Future Oncol ; 18(19): 2445-2454, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35574611

RESUMO

Objective: To conduct a systematic review and meta-analysis on the prediction of severity of gastric intestinal metaplasia (GIM) in localized and entire gastric mucosa using endoscopy. Methods: The authors searched Web of Science, PubMed, Embase and Cochrane Central Register of Controlled Trials and performed systematic searches on endoscopic grading of GIM of the entire stomach using Meta-DiSc and Stata. Results: Sensitivity and specificity for the stratified prediction of overall GIM were 0.91 (95% CI: 0.85-0.95) and 0.91 (95% CI: 0.88-0.93), respectively. Sensitivity in predicting the different grades of GIM was higher in operative link on GIM assessment grades 0, III and IV but lower in grades I and II. Conclusion: Digital chromoendoscopy is well suited to predicting the severity of localized and overall GIM.


Assuntos
Lesões Pré-Cancerosas , Neoplasias Gástricas , Endoscopia Gastrointestinal , Mucosa Gástrica/patologia , Humanos , Metaplasia/diagnóstico , Metaplasia/patologia , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia
15.
Eur Spine J ; 31(5): 1219-1227, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192070

RESUMO

PURPOSE: This study aimed to establish an animal model in which we can precisely displace the spinal cord and therefore mimic the chronic spinal compression of cervical spondylotic myelopathy. METHODS: In vivo intervertebral compression devices (IVCDs) connected with subcutaneous control modules (SCCMs) were implanted into the C2-3 intervertebral disk spaces of sheep and connected by Bluetooth to an in vitro control system. Sixteen sheep were divided into four groups: (Group A) control; (Group B) 10-week progressive compression, then held; (Group C) 20-week progressive compression, then held; and (Group D) 20-week progressive compression, then decompression. Electrophysiological analysis (latency and amplitude of the N1-P1-N2 wave in somatosensory evoked potentials, SEP), behavioral changes (Tarlov score), imaging test (encroachment ratio (ER) of intraspinal invasion determined by X-ray and CT scan), and histological examinations (hematoxylin and eosin, Nissl, and TUNEL staining) were performed to assess the efficacy of our model. RESULTS: Tarlov scores gradually decreased as compression increased with time and partially recovered after decompression. The Pearson correlation coefficient between ER and time was r = 0.993 (p < 0.001) in Group B at 10 weeks and Groups C and D at 20 weeks. And ER was negatively correlated with the Tarlov score (r = -0.878, p < 0.001). As compression progressed, the SEP latency was significantly extended (p < 0.001), and the amplitude significantly decreased (p < 0.001), while they were both partially restored after decompression. The number of abnormal motor neurons and TUNEL-positive cells increased significantly (p < 0.001) with compression. CONCLUSION: Our implantable and wireless intervertebral compression model demonstrated outstanding controllability and reproducibility in simulating chronic cervical spinal cord compression in animals.


Assuntos
Compressão da Medula Espinal , Doenças da Medula Espinal , Osteofitose Vertebral , Animais , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Vértebras Cervicais/cirurgia , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Reprodutibilidade dos Testes , Ovinos , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/cirurgia , Doenças da Medula Espinal/patologia
16.
Mikrochim Acta ; 189(3): 119, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195786

RESUMO

A novel nanocomposite of CuO nanoparticle-modified Zr-MOF (CuO/UiO-66) was synthesized and developed as a fluorescence nanoplatform for H2O2 and adenosine triphosphate (ATP) via the "turn-on-off" mode in the presence of terephthalic acid (TA). The structure of CuO/UiO-66 was thoroughly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and other techniques. The CuO/UiO-66 with enhanced peroxidase-like (POD) activity obtained due to the Zr4+ in UiO-66 is beneficial to the aggregation of CuO NPs on its surface. As a result, the strengthened fluorescence at 425 nm with the excitation of 300 nm was found due to the highly fluorescent species of TAOH. This is produced by the oxidation of TA by ·OH that came from the catalysis of H2O2 via the peroxidase mimic of CuO/UiO-66. Hence the modification of CuO NPs on porous UiO-66 can provide a friendly and sensitive physiological condition for H2O2 detection. However, upon addition of ATP, the fluorescence intensity of TAOH at 425 nm effectively declined owing to the formation of complexation of Zr4+-ATP and the interaction of CuO to ATP which hampers the catalytic reaction of CuO/UiO-66 to H2O2. The specific interaction induced "inhibition of the peroxide-like activity" endows the sensitive and selective recognition of ATP. The detection limits were 16.87 ± 0.2 nM and 0.82 ± 0.1 nM, and linear analytical ranges were 0.02-100 µM and 0.002-30 µM for H2O2 and ATP, respectively. The novel strategy was successfully applied to H2O2 and ATP determination in serum samples with recoveries of 97.2-103.8% for H2O2 and 97.6-101.7% for ATP, enriching the avenue to design functional MOFs and providing new avenue of multicomponent bioanalysis.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Trifosfato de Adenosina , Cobre , Fluorescência , Peróxido de Hidrogênio/química , Estruturas Metalorgânicas , Peroxidases/química , Ácidos Ftálicos
17.
Mikrochim Acta ; 190(1): 19, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512092

RESUMO

Rod-like graphite carbon nitride@MnO2 (R-g-C3N5@MnO2) heterostructure was prepared by in situ self-anchored growth of MnO2 nanosheet on the surface of R-g-C3N5. The synthesized R-g-C3N5@MnO2 heterostructure as photoactive material exhibited excellent photoelectrochemical (PEC) performance, and the prepared heterostructure-aptamer probe displayed sensitive PEC response to cTnI. Therefore, the PEC method was developed to detect cTnI based on the R-g-C3N5@MnO2 heterostructure. It was found that the linear response to cTnI was in the range 0.001-30 ng/mL under optimized conditions, and the detection limit of the proposed sensor was 0.3 pg/mL. The PEC method displays stable photocurrent response up to 8 cycles and exhibited outstanding selectivity and sensitivity. The PEC method was successfully applied to detect cTnI in serum samples. The recoveries of cTnI detection in serums reach 95.5-104%, and the relative standard deviations range from 3.20 to 4.45%.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Troponina I , Técnicas Biossensoriais/métodos , Limite de Detecção , Compostos de Manganês , Óxidos
18.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956805

RESUMO

Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.


Assuntos
Nicotina , Nitrosaminas , Carcinógenos/toxicidade , Dano ao DNA , Nicotina/metabolismo , Nicotina/toxicidade , Nitrosaminas/toxicidade , Nicotiana/metabolismo
19.
Anal Chem ; 93(7): 3586-3593, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33543940

RESUMO

A simple one-step ultrasonic method was developed for the synthesis of luminescent MnO2 quantum dots (MnO2 QDs) in the presence of cysteine, in which cysteine acted as the exfoliating agent and stabilization ligand. The cysteine-stabilized MnO2 QDs (Cys-MnO2 QDs) possess a fluorescence quantum yield of 4.7%, and the fluorescence intensity of Cys-MnO2 QDs is sensitive to dopamine (DA). The mechanism by which the Cys-MnO2 QDs catalyzed the self-polymerization of DA to form polydopamine nanoparticles (PDA NPs) and caused the fluorescence resonance energy transfer (FRET) between MnO2 QDs and PDA NPs was revealed. The sensing platform displayed a wide detection range (0.1-200 µM) with a low detection limit of 28 nM for the detection of DA. Moreover, the Michael addition/Schiff base reaction between the PDA NPs and cysteine on MnO2 QDs was demonstrated to facilitate the excellent selectivity toward DA detection in the presence of various interferences. This work not only develops a robust method for the preparation of highly luminescent MnO2 QDs but also provides a universal strategy on the basis of surface chemical reaction-induced FRET for the detection of DA with high sensitivity and selectivity, which is promising in the application of clinical diagnosis, drug delivery, and fluorescence-guided cancer therapy.


Assuntos
Pontos Quânticos , Catálise , Cisteína , Dopamina , Transferência Ressonante de Energia de Fluorescência , Limite de Detecção , Compostos de Manganês , Óxidos
20.
Anal Chem ; 93(28): 9878-9886, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34229430

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are chronic neurodegenerative diseases with high morbidity and mortality. Homocysteine (Hcy), cysteine (Cys), and glutathione (GSH) are closely related to AD and PD. However, the dynamics of Hcy, Cys, and GSH in the brain tissues and the potential pathogenesis between Cys/Hcy/GSH with AD and PD remain unclear. Herein, a novel fluorescent probe 1 with multiple binding sites was rationally designed and exploited for the direct quantification of serum total Hcy and Cys along with superior optical properties. Importantly, differentiation and simultaneity fluorescence imaging of Cys, Hcy, and GSH dynamics were achieved in living cells, tissues, and mouse models of AD and PD with this probe, providing direct evidences for the relationship between Hcy/Cys/GSH and AD/PD for the first time. In addition, pathogenesis studies demonstrated that elevated Hcy and Cys levels are closely related to imbalanced redox homeostasis, increased amyloid aggregates, and nerve cell cytotoxicity. These findings will greatly promote the understanding of the functions of Hcy/Cys/GSH in Alzheimer's and Parkinson's diseases, demonstrating clinical promise for the early diagnosis and prevention of AD and PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Animais , Cisteína , Corantes Fluorescentes , Glutationa , Células HeLa , Homocisteína , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA