Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408023

RESUMO

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

2.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656110

RESUMO

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

3.
Anal Chem ; 96(10): 4275-4281, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38409670

RESUMO

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.

4.
Anal Chem ; 96(17): 6784-6793, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632870

RESUMO

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Assuntos
Antígenos de Superfície da Hepatite B , Análise Espectral Raman , Antígenos de Superfície da Hepatite B/sangue , Análise Espectral Raman/métodos , Humanos , Vírus da Hepatite B/isolamento & purificação , Nanopartículas Metálicas/química , Hepatite B/sangue , Hepatite B/diagnóstico , Propriedades de Superfície , Limite de Detecção
5.
Osteoarthritis Cartilage ; 32(6): 666-679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403153

RESUMO

OBJECTIVE: Ageing and aberrant biomechanical stimulation are two major risk factors for osteoarthritis (OA). One of the main characteristics of aged cartilage is cellular senescence. One of the main characteristics of osteoarthritic joints is cartilage degeneration. The cells in the temporomandibular joint (TMJ) cartilage are zonally arranged. The deep zone cells are differentiated from the superficial zone cells (SZCs). The purpose of the present study was to investigate whether degenerative shear stress (SS) stimulates the senescence programme in TMJ SZCs, and to determine which miRNA is involved in this process. METHOD: SZCs were isolated from the TMJ condyles of 3-week-old rats and treated with continuous passaging or SS. RNA sequencing was conducted to identify miRNA(s) that overlap with those involved in the replication senescence process and the SS-induced degeneration programme. Unilateral anterior crossbite (UAC), which is TMJ-OA inducible, was applied to 2-month-old and 12-month-old mice for 3 weeks. The effect of TMJ local injection of agomiR-708-5p was evaluated histologically. RESULTS: Both replication and SS treatment induced SZC senescence. miR-708-5p was identified. Knocking down miR-708-5p in SS-treated SZCs led to more severe senescence by alleviating the inhibitory impact of miR-708-5p on the TLR4/NF-κB pathway. miR-708-5p expression in mouse TMJ cartilage decreased with age. UAC induced more severe osteoarthritic cartilage lesions in 12-month-old mice than in 2-month-old mice. Injection of agomiR-708-5p suppressed UAC-induced osteoarthritic cartilage lesions. CONCLUSIONS: Age-related miR-708-5p deficiency is involved in the mechanically stimulated OA process. Intra-articular administration of agomiR-708-5p is a promising new strategy for OA treatment.


Assuntos
Condrócitos , Côndilo Mandibular , MicroRNAs , NF-kappa B , Receptor 4 Toll-Like , Animais , Feminino , Camundongos , Ratos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Senescência Celular/genética , Condrócitos/metabolismo , Côndilo Mandibular/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Articulação Temporomandibular/patologia , Articulação Temporomandibular/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
FASEB J ; 37(8): e23004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37440279

RESUMO

The superficial zone cells in mandibular condylar cartilage are proliferative. The present purpose was to delineate the relation of calcium-sensing receptor (CaSR) and parathyroid hormone-related peptide nuclear localization sequence (PTHrP87-139 ), and their role in the proliferation behaviors of the superficial zone cells. A gain- and loss-of-function strategy were used in an in vitro fluid flow shear stress (FFSS) model and an in vivo bilateral elevation bite model which showed mandibular condylar cartilage thickening. CaSR and PTHrP87-139 were modulated through treating the isolated superficial zone cells with activator/SiRNA and via deleting CaSR or parathyroid hormone-related peptide (PTHrP) gene in mice with the promoter gene of proteoglycan 4 (Prg4-CreERT2 ) in the tamoxifen-inducible pattern with or without additional injection of Cinacalcet, the CaSR agonist, or PTHrP87-139 peptide. FFSS stimulated CaSR and PTHrP expression, and accelerated proliferation of the Prg4-expressing superficial zone cells, in which process CaSR acted as an up-streamer of PTHrP. Proteoglycan 4 specific knockout of CaSR or PTHrP reduced the cartilage thickness, suppressed the proliferation and early differentiation of the superficial zone cells, and inhibited cartilage thickening and matrix production promoted by bilateral elevation bite. Injections of CaSR agonist Cinacalcet could not improve the phenotype caused by PTHrP mutation. Injections of PTHrP87-139 peptide rescued the cartilage from knockout of CaSR gene. CaSR modulates proliferation of the superficial zone cells in mandibular condylar cartilage through activation of PTHrP nuclear localization sequence. Our data support the therapeutic target of CaSR in promoting PTHrP production in superficial zone cartilage.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Receptores de Detecção de Cálcio , Camundongos , Animais , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Condrócitos/metabolismo , Cartilagem/metabolismo , Articulação Temporomandibular/metabolismo , Proteoglicanas/metabolismo , Proliferação de Células
7.
FASEB J ; 37(4): e22888, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961420

RESUMO

The temporomandibular joint (TMJ) cartilage is biomechanical sensitive. Cells in TMJ cartilage are zonally arranged, earlier differentiated in the super zone and late differentiated in the deep zone. The purpose was to detect the zonal interdependence in TMJ cartilage under dental biomechanical stimulations. Here, we obtained the Sox9CreER ; Rosa26tdTomato and Col10CreER ; Rosa26tdTomato mice to label super zone Sox9-expressing (Sox9+ ) or deep zone Col10-expressing (Col10+ ) cells by tdTomato (TdT), and Sox9CreER ; Rosa26DTA and Col10CreER ; Rosa26DTA mice to ablate Sox9+ or Col10+ cells selectively. These mice were subjected to unilateral anterior crossbite (UAC) or bilateral anterior elevation (BAE) dental stimulation, which promoted terminal differentiation or proliferation of TMJ chondrocytes, respectively. In both UAC and BAE models, the Sox9-TdT+ cells performed as proliferation and mature differentiation, showing as expressing Ki67 and Col-X, respectively; while the Col10-TdT+ cells performed as terminal differentiation, showing as expressing osteocalcin (OCN). In both Sox9+ - and Col10+ -cells ablation groups, there were reductions in cell number, cartilage thickness and matrix amount, subchondral bone loss, and condylar deformation. The UAC-promoted terminal differentiation was enhanced, and the BAE-promoted cellular proliferation was ruined. Impressively, when Col10+ cells were ablated, the UAC-promoted DAP3 expression, an anoikis marker, was further increased, while the BAE-suppressed DAP3 expression was instead greatly increased. These findings demonstrated that the cartilage zones function interdependently. The super zone harbors the cells that undergo differentiation to deep zone cells, the deep zone contains load-bearing matrix which is structural essential for the cells located inside or superficial.


Assuntos
Cartilagem Articular , Camundongos , Animais , Cartilagem Articular/metabolismo , Articulação Temporomandibular/metabolismo , Condrócitos/metabolismo , Diferenciação Celular
8.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38973762

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.

9.
Int Endod J ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080721

RESUMO

AIM: The purpose of this study was to investigate the role of calcium-sensing receptor (CaSR) in the angiogenic differentiation of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). METHODOLOGY: The LPS-induced hDPCs were cultured in the medium with different combinations of CaSR agonist R568 and antagonist Calhex231. The cell proliferation, migration, and angiogenic capacity were measured by Cell Counting Kit-8 (CCK-8), scratch wound healing, and tube formation assays, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were conducted to determine the gene/protein expression of CaSR, inflammatory mediators, and angiogenic-associated markers. The activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) was assessed by western blot analysis. RESULTS: The cell proliferation was elevated in response to R568 or Calhex231 exposure, but an enhanced cell migration was only found in cultures supplemented with Calhex231. Furthermore, R568 was found to potentiate the formation of vessel-like structure, up-regulated the protein expression of tumour necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and stromal cell-derived factor (SDF)-1; comparable influences were also observed in R568-stimulated cells in the presence of PI3K inhibitor LY294002. In contrast, Calhex231 obviously inhibited the tube formation and VEGF protein level, whereas promoted the production of IL-6, TNF-α, and eNOS; however, in the presence of LY294002, Calhex231 showed a significant promotion on the protein expression of CaSR, VEGF, and SDF-1. In addition, R568 exhibited a promotive action on the Akt phosphorylation, which can be reversed by LY294002. CONCLUSIONS: Our results demonstrated that CaSR can regulate the angiogenic differentiation of LPS-treated hDPCs with an involvement of the PI3K/Akt signalling pathway.

10.
J Am Chem Soc ; 145(37): 20381-20388, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668654

RESUMO

Realizing the dual emission of fluorescence-phosphorescence in a single system is an extremely important topic in the fields of biological imaging, sensing, and information encryption. However, the phosphorescence process is usually in an inherently "dark state" at room temperature due to the involvement of spin-forbidden transition and the rapid non-radiative decay rate of the triplet state. In this work, we achieved luminescent harvesting of the dark phosphorescence processes by coupling singlet-triplet molecular emitters with a rationally designed plasmonic cavity. The achieved Purcell enhancement effect of over 1000-fold allows for overcoming the triplet forbidden transitions, enabling radiation enhancement with selectable emission wavelengths. Spectral results and theoretical simulations indicate that the fluorescence-phosphorescence peak position can be intelligently tailored in a broad range of wavelengths, from visible to near-infrared. Our study sheds new light on plasmonic tailoring of molecular emission behavior, which is crucial for advancing research on plasmon-tailored fluorescence-phosphorescence spectroscopy in optoelectronics and biomedicine.

11.
Bioorg Med Chem ; 90: 117373, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329678

RESUMO

N6-methyladenosine (m6A) is the most common mRNA modification in mammalians. The function and dynamic regulation of m6A depends on the "writer", "readers" and "erasers". YT521-B homology domain family (YTHDF) is a class of m6A binding proteins, including YTHDF1, YTHDF2 and YTHDF3. In recent years, the modification of m6A and the molecular mechanism of YTHDFs have been further understood. Growing evidence has shown that YTHDFs participate in multifarious bioprocesses, particularly tumorigenesis. In this review, we summarized the structural characteristics of YTHDFs, the regulation of mRNA by YTHDFs, the role of YTHDF proteins in human cancers and inhibition of YTHDFs.


Assuntos
Proteínas de Transporte , Neoplasias , Animais , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Adenosina/química , Mamíferos/metabolismo , Neoplasias/tratamento farmacológico
12.
J Chem Phys ; 158(2): 024203, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641419

RESUMO

A rapid and accurate diagnostic modality is essential to prevent the spread of SARS-CoV-2. In this study, we proposed a SARS-CoV-2 detection sensor based on surface-enhanced Raman scattering (SERS) to achieve rapid and ultrasensitive detection. The sensor utilized spike protein deoxyribonucleic acid aptamers with strong affinity as the recognition entity to achieve high specificity. The spherical cocktail aptamers-gold nanoparticles (SCAP) SERS substrate was used as the base and Au nanoparticles modified with the Raman reporter molecule that resonates with the excitation light and spike protein aptamers were used as the SERS nanoprobe. The SCAP substrate and SERS nanoprobes were used to target and capture the SARS-CoV-2 S protein to form a sandwich structure on the Au film substrate, which can generate ultra-strong "hot spots" to achieve ultrasensitive detection. Analysis of SARS-CoV-2 S protein was performed by monitoring changes in SERS peak intensity on a SCAP SERS substrate-based detection platform. This assay detects S protein with a LOD of less than 0.7 fg mL-1 and pseudovirus as low as 0.8 TU mL-1 in about 12 min. The results of the simulated oropharyngeal swab system in this study indicated the possibility of it being used for clinical detection, providing a potential option for rapid and accurate diagnosis and more effective control of SARS-CoV-2 transmission.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Humanos , Glicoproteína da Espícula de Coronavírus , Nanopartículas Metálicas/química , Ouro/química , Análise Espectral Raman/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
13.
Anal Chem ; 94(27): 9578-9585, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35770422

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has been widely applied in many fields as a sensitive vibrational fingerprint technique. However, SERS faces challenges in quantitative analysis due to the heterogeneity of hot spots. An internal standard (IS) strategy has been employed for correcting the variation of hot spots. However, the method suffers from limitations due to the competitive adsorption between the IS and the target analyte. In this work, we combined the IS strategy with the 3D hybrid nanostructures to develop a bifunctional SERS substrate. The substrate had two functional units. The bottom self-assembly layer consisted of Au@IS@SiO2 nanoparticles, which provided a stable reference signal and functioned as the calibration unit. The top one consisted of appropriate-sized Au octahedrons for the detection of target analytes, which was the detection unit. Within the 3D hybrid nanostructure, the calibration unit improved the SERS performance of the detection unit, which was demonstrated by the 6-fold increase of SERS intensity when compared with the 2D substrate. Meanwhile, the reproducibility of the detection was greatly improved by correcting the hot spot changes through the calibration unit. Two biomedical molecules of cotinine and creatinine in ultrapure water and artificial urine, respectively, were sensitively determined by the 3D hybrid substrate. We expect that the developed bifunctional 3D substrate will open up new ways to advance the applications of SERS.


Assuntos
Ouro , Nanopartículas Metálicas , Calibragem , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Dióxido de Silício , Análise Espectral Raman/métodos
14.
Anal Chem ; 94(2): 1318-1324, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34928126

RESUMO

Human pepsin is a digestive protease that plays an important role in the human digestive system. The secondary structure of human pepsin determines its bioactivity. Therefore, an in-depth understanding of human pepsin secondary structure changes is particularly important for the further improvement of the efficiency of human pepsin biological function. However, the complexity and diversity of the human pepsin secondary structure make its analysis difficult. Herein, a convenient method has been developed to quickly detect the secondary structure of human pepsin using a portable Raman spectrometer. According to the change of surface-enhanced Raman spectroscopy (SERS) signal intensity and activity of human pepsin at different pH values, we analyze the change of the human pepsin secondary structure. The results show that the content of the ß-sheet gradually increased with the increase in the pH in the active range, which is in good agreement with circular dichroism (CD) measurements. The change of the secondary structure improves the sensitivity of human pepsin SERS detection. Meanwhile, human pepsin is a commonly used disease marker for the noninvasive diagnosis of gastroesophageal reflux disease (GERD); the detection limit of human pepsin we obtained is 2 µg/mL by the abovementioned method. The real clinical detection scenario is also simulated by spiking pepsin solution in saliva, and the standard recovery rate is 80.7-92.3%. These results show the great prospect of our method in studying the protein secondary structure and furthermore promote the application of SERS in clinical diagnosis.


Assuntos
Refluxo Gastroesofágico , Pepsina A , Refluxo Gastroesofágico/diagnóstico , Humanos , Saliva/química , Análise Espectral Raman/métodos
15.
Anal Chem ; 94(51): 17795-17802, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36511436

RESUMO

Addressing the spread of coronavirus disease 2019 (COVID-19) has highlighted the need for rapid, accurate, and low-cost diagnostic methods that detect specific antigens for SARS-CoV-2 infection. Tests for COVID-19 are based on reverse transcription PCR (RT-PCR), which requires laboratory services and is time-consuming. Here, by targeting the SARS-CoV-2 spike protein, we present a point-of-care SERS detection platform that specifically detects SARS-CoV-2 antigen in one step by captureing substrates and detection probes based on aptamer-specific recognition. Using the pseudovirus, without any pretreatment, the SARS-CoV-2 virus and its variants were detected by a handheld Raman spectrometer within 5 min. The limit of detection (LoD) for the pseudovirus was 124 TU µL-1 (18 fM spike protein), with a linear range of 250-10,000 TU µL-1. Moreover, this assay can specifically recognize the SARS-CoV-2 antigen without cross reacting with specific antigens of other coronaviruses or influenza A. Therefore, the platform has great potential for application in rapid point-of-care diagnostic assays for SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos
16.
Small ; 18(39): e2203513, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008122

RESUMO

Enhanced electrochemiluminescence (ECL) aims to promote higher sensitivity and obtain better detection limit. The core-shell nanostructures, owing to unique surface plasmon resonance (SPR) enabling distance-dependent strong localized electromagnetic field, have attracted rising attention in enhanced ECL research and application. However, the present structures usually with porous shell involve electrocatalytic activity from the metal core and adsorption effect from the shell, which interfere with practical SPR enhancement contribution to ECL signal. Herein, to exclude the interference and unveil exact SPR-enhanced effect, shell-isolated nanoparticles (SHINs) whose shell gets thicker and becomes pinhole-free are developed by modifying pH value and particles concentration. Furthermore, allowing for the distribution of hotspots and stronger enhancement, excitation intensity and ECL reaction layer thickness are mainly investigated, and several types of SHINs-enhanced ECL platforms are prepared to fabricate distinct hotspot distribution via electrostatic attraction (submonolayer) and a layer-by-layer deposition method (monolayer). Consequently, the strongest enhancement up to ≈250-fold is achieved by monolayer SHINs with 10 nm shell, and the platform is applied in a "turn-off" mode sensing for dopamine. The platform provides new guidelines to shell preparation, interface engineering and hotspots fabrication for superior ECL enhancement and analytical application with high performance.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Dopamina , Técnicas Eletroquímicas/métodos , Ouro/química , Medições Luminescentes/métodos , Nanopartículas Metálicas/química
17.
Nat Mater ; 20(9): 1210-1215, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33846584

RESUMO

Research efforts of cavity quantum electrodynamics have focused on the manipulation of matter hybridized with photons under the strong coupling regime1-3. This has led to striking discoveries including polariton condensation2 and single-photon nonlinearity3, where the phonon scattering plays a critical role1-9. However, resolving the phonon scattering remains challenging for its non-radiative complexity. Here we demonstrate nonlinear phonon scattering in monolayer MoS2 that is strongly coupled to a plasmonic cavity mode. By hybridizing excitons and cavity photons, the phonon scattering is equipped with valley degree of freedom and boosted with superlinear enhancement to a stimulated regime, as revealed by Raman spectroscopy and our theoretical model. The valley polarization is drastically enhanced and sustained throughout the stimulated regime, suggesting a coherent scattering process enabled by the strong coupling. Our findings clarify the feasibility of valley-cavity-based systems for lighting, imaging, optical information processing and manipulating quantum correlations in cavity quantum electrodynamics2,3,10-17.

18.
Oral Dis ; 28(7): 1911-1920, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33979023

RESUMO

OBJECTIVE: Incisors tubed prosthesis with bilateral anterior elevation (BAE) relation had been reported to stimulate the proliferative response in the mandibular condylar cartilage of mice, thus the prosthetic occlusion elevation had been proposed to treat cartilage degeneration. Currently, we aimed to detect the long-term effect of BAE on temporomandibular joints (TMJs). MATERIALS AND METHODS: Twelve 6-week-old female mice were assigned to age-matched control and BAE groups (n = 6). Micro-CT images and the macro- and micro-morphology of the mandibular condyles were analyzed at 29 weeks. RESULTS: Compared with the age-matched controls, in BAE group, there were loss of subchondral cortical bone and heavy loss of the subchondral trabecular bone at the superior sites of the TMJ condyles, but hyperostosis at the inferior sites as revealed by micro-CT images and histological slices. In BAE group, cartilage thickness and matrix area were increased with upregulated expression of type II, type X collagen, and Ki67, but the expression of cleaved caspase-3 was downregulated (all, p < 0.05). CONCLUSION: In addition to cartilage thickening, long-term BAE induces loss of the subchondral cortical bone and heavy loss of the underneath subchondral trabecular bone, but hyperostosis further underneath. Using BAE as a treatment remains double-edged.


Assuntos
Cartilagem Articular , Hiperostose , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Oclusão Dentária , Feminino , Hiperostose/metabolismo , Hiperostose/patologia , Côndilo Mandibular/diagnóstico por imagem , Côndilo Mandibular/metabolismo , Camundongos , Articulação Temporomandibular/diagnóstico por imagem , Articulação Temporomandibular/patologia , Microtomografia por Raio-X/métodos
19.
J Mater Sci Mater Med ; 33(7): 56, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723747

RESUMO

The aim of this study was to evaluate the effects of butt margin, occlusal thickness and pulp chamber extension depth on stress distributions on mandibular molar endodontically treated teeth (ETT) with EMAX endocrown restoration using 3-dimensional finite element analysis (FEA). The FEA models of endocrown with flat surface or curve surface of butt margin were firstly evaluated stress distributions, and then 9 FEA models of endocrown with 1-, 2- or 3-mm pulp chamber extension depth and 1-, 2- or 3-mm occlusal thickness were generated using curve surface of butt margin. In all of FEA models, a 200 N of vertical load or horizontal load was applied, and the von Mises stress (VMS) were evaluated. The results showed that curve surface of butt margin offered more adhesive area of enamel, though VMS on the prepared teeth was similar in flat surface and curve surface models. In 9 endocrown models, 2-mm occlusal thickness showed the lowest VMS on restorations, teeth tissue and root furcations, and 2-mm extension depth displayed the lowest VMS on root furcations under vertical load. Also, 2-mm extension depth exhibited the lowest VMS on restorations and teeth tissue under horizontal load. Within the limitations of this FEA study, the results of this study could be used as an aid for dentists to better devise endocrown restorations. Graphical abstract.


Assuntos
Cavidade Pulpar , Dente não Vital , Análise de Elementos Finitos , Humanos , Dente Molar , Dente não Vital/terapia
20.
J Prosthet Dent ; 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35216818

RESUMO

STATEMENT OF PROBLEM: The effect of different sizes of endodontic access preparations on the performance of lithium disilicate glass-ceramic and resin nanoceramic onlay restorations is unclear. PURPOSE: The purpose of this in vitro and 3D finite element analysis study was to assess the effect of a conservative endodontic access cavity and a traditional endodontic access cavity on the fracture resistance and stress distribution of lithium disilicate glass-ceramic and resin nanoceramic onlays. MATERIAL AND METHODS: Sixty caries-free human mandibular molars were anatomically prepared for onlays and divided into 6 groups. After restoration with a lithium disilicate glass-ceramic (N=30) or resin nanoceramic (N=30), each material was further divided into traditional or conservative endodontic access cavity or intact tooth groups. After endodontic therapy and thermocycling, all specimens were submitted to a cycle fatigue test and then loaded until fracture. Failure type and location after debonding or fracture were classified and recorded. Furthermore, stress distribution in the 6 models was analyzed by using a finite element analysis software program. The data were compared by using a 2-way ANOVA test and the Tukey post hoc test (α=.05). The Weibull modulus and Weibull failure probabilities were also estimated for each group. RESULTS: The lithium disilicate glass-ceramic onlays had lower fracture resistance values than the resin nanoceramic onlays in both the traditional and conservative endodontic access cavity groups (P<.05). The fracture resistance of the 2 materials for onlays with endodontic access was significantly lower than that for the intact restorations (P<.05). No significant difference was found between the fracture resistance of Lava Ultimate restorations with traditional endodontic access and conservative endodontic access, while the fracture resistance of EMAX restorations with traditional endodontic access was significantly lower than that of restorations with conservative endodontic access (P<.05). A higher percentage of irreparable fractures was found in the 3 resin nanoceramic restoration groups. The von Mises stresses were higher in the lithium disilicate glass-ceramic restorations than in the resin nanoceramic restorations with the same access cavities. The von Mises stresses in the tooth structure were higher with the resin nanoceramic restorations than with the lithium disilicate glass-ceramic restorations with the same access cavities. CONCLUSIONS: An endodontic access cavity had more influence on the lithium disilicate glass-ceramic onlays than on the resin nanoceramic onlays, and a traditional endodontic access cavity significantly decreased the fracture resistance of lithium disilicate glass-ceramic onlays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA