RESUMO
As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.
Assuntos
COVID-19 , Sarampo , Caxumba , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Imunoglobulina G , Mesocricetus , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.
Assuntos
Interferon Tipo I , Viroses , 5-Metilcitosina/metabolismo , Animais , Antivirais , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Interferons , Ligantes , Camundongos , RNA Polimerase III , Replicação Viral/genéticaRESUMO
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.
Assuntos
Prolina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Desenvolvimento de Vacinas , Estomatite Vesicular , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Cricetinae , Humanos , Camundongos , Prolina/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologiaRESUMO
With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina contra Sarampo-Caxumba-Rubéola , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Eficácia de Vacinas , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Vacina contra Sarampo-Caxumba-Rubéola/genética , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Mesocricetus , Camundongos , Vírus da Caxumba/genética , Vírus da Caxumba/imunologia , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologiaRESUMO
The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR-/-mice, IFNAR-/--hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos , Vírus do Sarampo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/complicações , COVID-19/patologia , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imunização , Imunogenicidade da Vacina , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Camundongos , Camundongos Transgênicos , Ratos , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/genéticaRESUMO
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.
Assuntos
Tratamento Farmacológico da COVID-19 , Heparina/análogos & derivados , Linhagem Celular , Citocinas/metabolismo , Fenofibrato , Técnicas de Silenciamento de Genes , Glucuronidase/genética , Glucuronidase/metabolismo , Heparina/uso terapêutico , Humanos , Imunidade/efeitos dos fármacos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , NF-kappa B , SARS-CoV-2RESUMO
Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in humans. A well-known challenge in the development of a live attenuated RSV vaccine is that interferon (IFN)-mediated antiviral responses are strongly suppressed by RSV nonstructural proteins which, in turn, dampens the subsequent adaptive immune responses. Here, we discovered a novel strategy to enhance innate and adaptive immunity to RSV infection. Specifically, we found that recombinant RSVs deficient in viral RNA N6-methyladenosine (m6A) and RSV grown in m6A methyltransferase (METTL3)-knockdown cells induce higher expression of RIG-I, bind more efficiently to RIG-I, and enhance RIG-I ubiquitination and IRF3 phosphorylation compared to wild-type virion RNA, leading to enhanced type I IFN production. Importantly, these m6A-deficient RSV mutants also induce a stronger IFN response in vivo, are significantly attenuated, induce higher neutralizing antibody and T cell immune responses in mice and provide complete protection against RSV challenge in cotton rats. Collectively, our results demonstrate that inhibition of RSV RNA m6A methylation enhances innate immune responses which in turn promote adaptive immunity.
Assuntos
Adenosina/análogos & derivados , RNA Viral , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Imunidade Adaptativa , Animais , Imunidade Inata , Metilação , Camundongos , RatosRESUMO
Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.
Assuntos
COVID-19 , Cricetinae , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinas contra COVID-19 , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Vírus do Sarampo/genética , Prolina , Anticorpos AntiviraisRESUMO
The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Encéfalo/virologia , COVID-19/imunologia , Linhagem Celular , Síndrome da Liberação de Citocina/prevenção & controle , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Imunogenicidade da Vacina , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Mesocricetus , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Vacinas Sintéticas/imunologia , Vírus da Estomatite Vesicular Indiana/enzimologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação ViralRESUMO
N6-Methyladenosine (m6A) is the most abundant internal RNA modification catalyzed by host RNA methyltransferases. As obligate intracellular parasites, many viruses acquire m6A methylation in their RNAs. However, the biological functions of viral m6A methylation are poorly understood. Here, we found that viral m6A methylation serves as a molecular marker for host innate immunity to discriminate self from nonself RNA and that this novel biological function of viral m6A methylation is universally conserved in several families in nonsegmented negative-sense (NNS) RNA viruses. Using m6A methyltransferase (METTL3) knockout cells, we produced m6A-deficient virion RNAs from the representative members of the families Pneumoviridae, Paramyxoviridae, and Rhabdoviridae and found that these m6A-deficient viral RNAs triggered significantly higher levels of type I interferon compared to the m6A-sufficient viral RNAs, in a RIG-I-dependent manner. Reconstitution of the RIG-I pathway revealed that m6A-deficient virion RNA induced higher expression of RIG-I, bound to RIG-I more efficiently, enhanced RIG-I ubiquitination, and facilitated RIG-I conformational rearrangement and oligomerization. Furthermore, the m6A binding protein YTHDF2 is essential for suppression of the type I interferon signaling pathway, including by virion RNA. Collectively, our results suggest that several families in NNS RNA viruses acquire m6A in viral RNA as a common strategy to evade host innate immunity.IMPORTANCE The nonsegmented negative-sense (NNS) RNA viruses share many common replication and gene expression strategies. There are no vaccines or antiviral drugs for many of these viruses. We found that representative members of the families Pneumoviridae, Paramyxoviridae, and Rhabdoviridae among the NNS RNA viruses acquire m6A methylation in their genome and antigenome as a means to escape recognition by host innate immunity via a RIG-I-dependent signaling pathway. Viral RNA lacking m6A methylation induces a significantly higher type I interferon response than m6A-sufficient viral RNA. In addition to uncovering m6A methylation as a common mechanism for many NNS RNA viruses to evade host innate immunity, this study discovered a novel strategy to enhance type I interferon responses, which may have important applications in vaccine development, as robust innate immunity will likely promote the subsequent adaptive immunity.
Assuntos
Adenosina/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Interferon Tipo I/imunologia , Vírus de RNA de Sentido Negativo , Infecções por Vírus de RNA , RNA Viral/genética , Células A549 , Adenosina/genética , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Imunidade Inata , Metiltransferases/genética , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/imunologia , Vírus de RNA de Sentido Negativo/patogenicidade , Processamento Pós-Transcricional do RNA , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologiaRESUMO
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is a novel and highly pathogenic coronavirus and is the causative agent of the coronavirus disease 2019 (COVID-19). The high morbidity and mortality associated with COVID-19 and the lack of an approved drug or vaccine for SARS-CoV-2 underscores the urgent need for developing effective antiviral therapies. Therapeutics that target essential viral proteins are effective at controlling virus replication and spread. Coronavirus Spike glycoproteins mediate viral entry and fusion with the host cell, and thus are essential for viral replication. To enter host cells, the Spike proteins of SARS-CoV-2 and related coronavirus, SARS-CoV, bind the host angiotensin-converting enzyme 2 (ACE2) receptor through their receptor binding domains (RBDs). Here, we rationally designed a panel of ACE2-derived peptides based on the RBD-ACE2 binding interfaces of SARS-CoV-2 and SARS-CoV. Using SARS-CoV-2 and SARS-CoV Spike-pseudotyped viruses, we found that a subset of peptides inhibits Spike-mediated infection with IC50 values in the low millimolar range. We identified two peptides that bound Spike RBD in affinity precipitation assays and inhibited infection with genuine SARS-CoV-2. Moreover, these peptides inhibited the replication of a common cold causing coronavirus, which also uses ACE2 as its entry receptor. Results from the infection experiments and modeling of the peptides with Spike RBD identified a 6-amino-acid (Glu37-Gln42) ACE2 motif that is important for SARS-CoV-2 inhibition. Our work demonstrates the feasibility of inhibiting SARS-CoV-2 with peptide-based inhibitors. These findings will allow for the successful development of engineered peptides and peptidomimetic-based compounds for the treatment of COVID-19.
Assuntos
Enzima de Conversão de Angiotensina 2/química , Antivirais/farmacologia , Desenho de Fármacos , Fragmentos de Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Hemoglobin is an important oxygen-carrying protein and plays crucial roles in establishing host resistance against pathogens and in regulating innate immune responses. The hemoglobin subunit beta (HB) is an essential component of hemoglobin, and we have previously demonstrated that the antiviral role of the porcine HB (pHB) is mediated by promoting type I interferon pathways. Thus, considering the high homology between human HB (hHB) and pHB, we hypothesized that hHB also plays an important role in the antiviral innate immunity. In this study, we characterized hHB as a regulatory factor for the replication of RNA viruses by differentially regulating the RIG-I- and MDA5-mediated antiviral signaling pathways. Furthermore, we showed that hHB directly inhibited MDA5-mediated signaling by reducing the MDA5-double-stranded RNA (dsRNA) interaction. Additionally, hHB required hHB-induced reactive oxygen species (ROS) to promote RIG-I-mediated signaling through enhancement of K63-linked RIG-I ubiquitination. Taken together, our findings suggest that hHB is a pleiotropic regulator of RIG-I/MDA5-mediated antiviral responses and further highlight the importance of the intercellular microenvironment, including the redox state, in regulating antiviral innate immune responses.IMPORTANCE Hemoglobin, the most important oxygen-carrying protein, is involved in the regulation of innate immune responses. We have previously reported that the porcine hemoglobin subunit beta (HB) exerts antiviral activity through regulation of type I interferon production. However, the antiviral activities and the underlying mechanisms of HBs originating from other animals have been poorly understood. Here, we identified human HB (hHB) as a pleiotropic regulator of the replication of RNA viruses through regulation of RIG-I/MDA5-mediated signaling pathways. hHB enhances RIG-I-mediated antiviral responses by promoting RIG-I ubiquitination depending on the hHB-induced reactive oxygen species (ROS), while it blocks MDA5-mediated antiviral signaling by suppressing the MDA5-dsRNA interaction. Our results contribute to an understanding of the crucial roles of hHB in the regulation of the RIG-I/MDA5-mediated signaling pathways. We also provide novel insight into the correlation of the intercellular redox state with the regulation of antiviral innate immunity.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína DEAD-box 58/metabolismo , Suscetibilidade a Doenças , Imunidade Inata , Viroses/etiologia , Viroses/metabolismo , Globinas beta/metabolismo , Linhagem Celular , Resistência à Doença , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Biológicos , Proibitinas , Vírus de RNA , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos , Transdução de Sinais , Ubiquitinação , Replicação Viral , Globinas beta/genéticaRESUMO
In the host, many RING domain E3 ligases have been reported to inhibit viral replication through various mechanisms. In a previous screen, we found that porcine RING finger protein 114 (pRNF114), a RING domain E3 ubiquitin ligase, inhibits classical swine fever virus (CSFV) replication. This study aimed to clarify the underlying antiviral mechanism of pRNF114 against CSFV. Upon CSFV infection, pRNF114 mRNA was upregulated both in vitro and in vivo CSFV replication was significantly suppressed in PK-pRNF114 cells stably expressing pRNF114 by the lentivirus-delivered system, whereas CSFV growth was enhanced in PK-15 cells with RNF114 knockout by the CRISPR/Cas9 system. The RING domain of pRNF114, which has E3 ubiquitin ligase activity, is crucial for its antiviral activity. Mechanistically, pRNF114 interacted with the CSFV NS4B protein through their C-terminal domains, which led to the K27-linked polyubiquitination and degradation of NS4B through a proteasome-dependent pathway. Collectively, these findings indicate that pRNF114 as a critical regulator of CSFV replication and uncover a mechanism by which pRNF114 employs its E3 ubiquitin ligase activity to inhibit CSFV replication.IMPORTANCE Porcine RING finger protein 114 (pRNF114) is a member of the RING domain E3 ligases. In this study, it was shown that pRNF114 is a potential anti-CSFV factor and the anti-CSFV effect of pRNF114 depends on its E3 ligase activity. Notably, pRNF114 targets and catalyzes the K27-linked polyubiquitination of the NS4B protein and then promotes proteasome-dependent degradation of NS4B, inhibiting the replication of CSFV. To our knowledge, pRNF114 is the first E3 ligase to be identified as being involved in anti-CSFV activity, and targeting NS4B could be a crucial route for antiviral development.
Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/prevenção & controle , Lisina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Células HEK293 , Humanos , Lisina/genética , Suínos , Ubiquitina-Proteína Ligases/genética , Proteínas não Estruturais Virais/genéticaRESUMO
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which poses a serious threat to the global pig industry. Interferons (IFNs) and IFN-stimulated genes (ISGs) play a key role in host antiviral defense. We have previously screened the porcine 2'-5'-oligoadenylate synthetase-like protein (pOASL) as a potential anti-CSFV ISG using a reporter CSFV. This study aimed to clarify the underlying antiviral mechanism of pOASL against CSFV. We confirmed that CSFV replication was significantly suppressed in lentivirus-delivered, pOASL-overexpressing PK-15 cells, whereas silencing the expression of endogenous pOASL by small interfering RNAs markedly enhanced CSFV growth. In addition, the transcriptional level of pOASL was upregulated both in vitro and in vivo upon CSFV infection. Interestingly, the anti-CSFV effects of pOASL are independent of the canonical RNase L pathway but depend on the activation of the type I IFN response. Glutathione S-transferase pulldown and coimmunoprecipitation assays revealed that pOASL interacts with MDA5, a double-stranded RNA sensor, and further enhances MDA5-mediated type I IFN signaling. Moreover, we showed that pOASL exerts anti-CSFV effects in an MDA5-dependent manner. In conclusion, pOASL suppresses CSFV replication via the MDA5-mediated type I IFN-signaling pathway.IMPORTANCE The host innate immune response plays an important role in mounting the initial resistance to viral infection. Here, we identify the porcine 2'-5'-oligoadenylate synthetase-like protein (pOASL) as an interferon (IFN)-stimulated gene (ISG) against classical swine fever virus (CSFV). We demonstrate that the anti-CSFV effects of pOASL depend on the activation of type I IFN response. In addition, we show that pOASL, as an MDA5-interacting protein, is a coactivator of MDA5-mediated IFN induction to exert anti-CSFV actions. This work will be beneficial to the development of novel anti-CSFV strategies by targeting pOASL.
Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Vírus da Febre Suína Clássica/fisiologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Animais , Linhagem Celular , Peste Suína Clássica/imunologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/crescimento & desenvolvimento , Endorribonucleases/genética , Endorribonucleases/metabolismo , Glutationa Transferase/metabolismo , Imunidade Inata , Imunoprecipitação , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , RNA Interferente Pequeno/genética , Transdução de Sinais , Suínos , Replicação ViralRESUMO
RNA fate and function are affected by their structures and interactomes. However, how RNA and RNA-binding proteins (RBPs) assemble into higher-order structures and how RNA molecules may interact with each other to facilitate functions remain largely unknown. Here we present KARR-seq, which uses N3-kethoxal labeling and multifunctional chemical crosslinkers to covalently trap and determine RNA-RNA interactions and higher-order RNA structures inside cells, independent of local protein binding to RNA. KARR-seq depicts higher-order RNA structure and detects widespread intermolecular RNA-RNA interactions with high sensitivity and accuracy. Using KARR-seq, we show that translation represses mRNA compaction under native and stress conditions. We determined the higher-order RNA structures of respiratory syncytial virus (RSV) and vesicular stomatitis virus (VSV) and identified RNA-RNA interactions between the viruses and the host RNAs that potentially regulate viral replication.
RESUMO
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
Assuntos
Administração Intranasal , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Cricetinae , Humanos , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Vírus do Sarampo/imunologia , Vírus do Sarampo/genética , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Caxumba/imunologia , Vírus da Caxumba/genética , Camundongos Knockout , Mesocricetus , Imunoglobulina A/imunologia , Imunoglobulina A/sangueRESUMO
Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the Flaviviridae family. To date, the host factors required for CSFV entry remain poorly characterized. To identify the functional membrane protein(s) involved in CSFV infection, we analyzed the transcriptomic data from previous studies describing gene expression profiles for CSFV, and found twelve novel candidate proteins. One of these proteins, MERTK, significantly reduced CSFV protein expression by RNA interference screening using a recombinant CSFV that contains a luciferase reporter to measure CSFV protein expression. Furthermore, our results demonstrated that either anti-MERTK antibodies or soluble MERTK ectodomain could reduce CSFV infection in PK-15 cells in a dose-dependent manner. Mechanistically, MERTK interacted with the E2 protein of CSFV and facilitated virus entry. After virus entry, MERTK downregulates of mRNA expression of IFN-ß and promotes CSFV infection. Interestingly, the soluble MERTK ectodomain could also reduce the infection of bovine viral diarrhea virus (BVDV), another pestivirus. Taken together, our results suggested that MERTK is a CSFV entry factor that synergistically dampens innate immune responses in PK-15 cells and is also involved in BVDV infection.
Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/imunologia , Imunidade Inata , Internalização do Vírus , c-Mer Tirosina Quinase/metabolismo , Animais , Bovinos , Linhagem Celular , Humanos , Recombinação Genética , Suínos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , c-Mer Tirosina Quinase/genéticaRESUMO
The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi's sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host-virus interactions and discuss the outlooks of the RING E3s for future research.