Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2322663121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768354

RESUMO

The fangs, jaws, and mandibles of marine invertebrates such as Chiton and Glycera show excellent mechanical properties, which are mostly contributed to the interactions between metal (Fe, Cu, Zn, etc.) and oxygen-containing functional groups in proteins. Inspired by these load-bearing skeletal biomaterials, we improved tensile strength and toughness of graphene films through bridging graphene oxide (GO) nanosheets by metal ions. By optimizing the metal coordination form and density of cross-linking network. We revealed the relationship between mechanical properties and the unique spatial geometry of the GO nanosheets bridged by different valence metal ions. The results demonstrated that the divalent metal ions form tetrahedral geometry with carboxylate groups on the edges of the GO nanosheets, and the bond energy is relatively low, which is helpful for improving the toughness of resultant graphene films. While the trivalent metal ions are easily to form octahedral geometry with the GO nanosheets with higher bond energy, which is better for enhancing the tensile strength of graphene films. After reduction, the reduced GO (rGO) film bridged by divalent metal ions shows 43% improvement in toughness, while the rGO film bridged by trivalent metal ions shows 64% improvement in tensile strength. Our work reveals the mechanism of metal coordination bond energy and spatial geometry to improve the mechanical properties of graphene films, which lays a theoretical foundation for improving the tensile strength and toughness of resultant graphene films, and provides an avenue for fabricating high-performance graphene films and other two-dimensional nanocomposites.

2.
Mikrochim Acta ; 191(5): 290, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683258

RESUMO

A core-shell ZIF-67@ZIF-8-derived Co nanoparticles embedded in N-doped carbon nanotube polyhedra (Co/C-NCNP) hybrid nanostructure was prepared by a pyrolysis method. The synthesized Co/C-NCNP was modified on the screen-printed carbon electrode and used for the portable wireless sensitive determination of breviscapine (BVC) by differential pulse voltammetry. The Co/C-NCNP had a large surface area and excellent catalytic activity with increasing Co sites to combine with BVC for selective determination, which led to the improvement of the sensitivity of the electrochemical sensor. Under optimized conditions, the constructed sensor had linear ranges from 0.15 to 20.0 µmol/L and 20.0 to 100.0 µmol/L with the limit of detection of 0.014 µmol/L (3S0/S). The sensor was successfully applied to BVC tablet sample analysis with satisfactory results. This work provided the potential applications of zeolitic imidazolate framework-derived nanomaterials in the fabrication of electrochemical sensors for the sensitive detection of drug samples.

3.
J Environ Manage ; 351: 119803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134503

RESUMO

The use of umbrella species to promote biodiversity conservation is practiced worldwide. The giant panda (Ailuropoda melanoleuca) an iconic species for world wildlife conservation, that inhabits regions with significant biodiversity. Given that the functions at wildlife of different trophic levels and in different body size groups are different within the ecosystem, it is unknown whether those groups of wildlife co-occurring with giant pandas are each likewise protected. To examine the umbrella effect of giant pandas on sympatric species, we used an extensive dataset of wildlife from more than 78% of giant panda habitats. We analysed the changes in distribution for four wildlife categories (large carnivores, large herbivores, medium carnivores and medium herbivores) using a generalized linear mixed model, and the underlying driving factors using binomial logistic regression models. Changes in forests in giant panda habitats were evaluated using Fragstats. The results have shown that the counts of herbivores and medium carnivores increased significantly during the decade. However, those of large carnivores significantly declined. Forest cover and nature reserves showed significant and positive effects on wildlife in 2001 and 2011, while the human population had significant and negative impacts on the herbivores and carnivores. Our results have also suggested that there has been a slight alleviation in forest fragmentation in areas unaffected by earthquakes. We concluded that the umbrella strategy of using the giant panda as an umbrella species achieved partial success by promoting the recovery of herbivores and medium carnivores. Meanwhile, this has indicated that the strategy was not sufficient for large carnivores, and therefore not enough for local ecosystems, given the critical role of large carnivores. We have suggested integrating habitat patches, controlling human disturbance, and preparing for potential human-wildlife conflict management in the Giant Panda National Park to restore large carnivore populations and maintain ecosystem functioning.


Assuntos
Ursidae , Animais , Humanos , Ecossistema , Conservação dos Recursos Naturais/métodos , Simpatria , Biodiversidade , Animais Selvagens , China
4.
Angew Chem Int Ed Engl ; : e202405228, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744669

RESUMO

Nacre is a classic model, providing an inspiration for fabricating high-performance bulk nanocomposites with the two-dimensional platelets. However, the "brick" of nacre, aragonite platelet, is an ideal building block for making high-performance bulk nanocomposites. Herein, we demonstrated a strong and tough conductive nacre through reassembling aragonite platelets with bridged by MXene nanosheets and hydrogen bonding, not only providing high mechanical properties but also excellent electrical conductivity. The flexural strength and fracture toughness of the obtained conductive nacre reach ~282 MPa and ~6.3 MPa m1/2, which is 1.6 and 1.6 times higher than that of natural nacre, respectively. These properties are attributed to densification and high orientation degree of the conductive nacre, which is effectively induced by the combined interactions of hydrogen bonding and MXene nanosheets bridging. The crack propagations in conductive nacre are effectively inhibited through crack deflection with hydrogen bonding, and MXene nanosheets bridging between aragonite platelets. In addition, our conductive nacre also provides a self-monitoring function for structural damage and offers exceptional electromagnetic interference shielding performance. Our strategy of reassembling the aragonite platelets exfoliated from waste nacre into high-performance artificial nacre, provides an avenue for fabricating high-performance bulk nanocomposites through the sustainable reutilization of shell resources.

5.
Opt Lett ; 48(11): 3023-3026, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262271

RESUMO

For underwater wireless optical communication (UWOC) systems, using an omnidirectional light source to construct a broadcast system will require considerable energy due to high geometric loss and water attenuation. In addition, high-sensitivity photon detectors usually have a limited dynamic range, therefore limiting communication distance. In this Letter, a broadcast UWOC system, based on liquid crystal variable retarders (LCVRs) and polarization beam splitters (PBSs), is proposed to allocate user power in accordance with user-specific channel conditions. By adjusting the driving alternating current (AC) voltage of LCVRs to change the input light polarization, different proportions of light can be allocated to different PBS ports before broadcasting to different users. In a dual-user transmitter for the proof-of-concept, the output power dynamic range and the additional insertion loss for the first user are 19.17 dB and 0.91 dB, respectively. For the second user, the performance degrades to 17.33 dB and 1.26 dB, respectively. The step size of power adjustment is less than 0.063 dB. To verify the effectiveness of power adjustment in UWOC systems, a 7-m/243.2-Mbps single-user UWOC system is designed with a water attenuation coefficient ranging from 0.50 dB/m to 2.35 dB/m. All bit error rates (BERs) can decrease to below the forward error correction (FEC) limit by adjusting the LCVR driving voltage. The adjustable range of communication distance could be extended from 4.2 m to 13.19 m with a channel attenuation coefficient of 1.44 dB/m. Finally, a dual-user UWOC experiment is conducted and proves that the proposed system can still work in a multi-user system. The proposed system is proven to be effective for improving the anti-jamming capability and flexibility of UWOC networks.

6.
Environ Res ; 237(Pt 1): 116882, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574103

RESUMO

Common commercial demulsifiers are typically made from ethylene oxide and propylene oxide. The production process is dangerous and complex, with poor adaptability and high cost. In this work, cotton modified with polyethylene polyamine was utilized as a demulsifier for the treatment of oily wastewater. The chemical structure and morphology of the as-prepared sample (CPN) were characterized by IR spectrum and SEM. The effect of CPN dosage, pH value, and salinity on the demulsification performance of oily wastewater was explored through the bottle tests. The results showed that the light transmittance of separated water was 81.7% and the corresponding deoiling rate was 98.5% when a CPN dosage of 25 mg/L was used at room temperature for 30 min. The interfacial properties were also systematically investigated, and the results indicated that CPN had better interfacial activity and a stronger reduction capability of interfacial tension compared to asphaltenes. The finding initiated and accelerated the demulsification process of oily wastewater. Based on the outstanding performance of this biomass-derived demulsifier, it shows promising potential for application in the treatment of oily wastewater.

7.
Appl Opt ; 62(28): 7354-7361, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855502

RESUMO

An underwater laser positioning scheme based on a binocular camera is introduced. In spite of the scattering, the underwater laser light path can be clearly captured by a camera within an appropriate range depending on the water turbidity. For an emitting laser with a fixed position, the three-dimensional information of the laser source can be calculated from the beam images captured by a binocular camera, even if the laser is out of the camera's field of view (FOV). This method can break through the FOV limitation of traditional camera positioning and perform a 3D spatial positioning for the target even outside the FOV of the camera. We simulate and analyze the scattering light imaging and find that the laser propagation direction can be recognized from the scattering image. The experimental results show that the proposed underwater positioning scheme achieves an average 3D positioning error of 5.53 cm within a range of 5 m when the underwater attenuation is 0.325m -1.

8.
J Environ Manage ; 342: 118319, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290306

RESUMO

While the relatively stable land use and land cover (LULC) patterns is an important feature of protected areas (PAs), the influence of this feature on future species distribution and the effectiveness of the PAs has rarely been explored. Here, we assessed the role of land use patterns within PAs on the projected range of the giant panda (Ailuropoda melanoleuca) by comparing projections inside and outside of PAs for four model configurations: (1) only climate covariates, (2) climate and dynamic land use covariates, (3) climate and static land use covariates and (4) climate and hybrid dynamic-static land use covariates. Our objectives were twofold: to understand the role of protected status on projected panda habitat suitability and evaluate the relative efficacy of different climate modeling approaches. The climate and land use change scenarios used in the models include two shared socio-economic pathways (SSPs) scenarios: SSP126 [an optimistic scenario] and SSP585 [a pessimistic scenario]. We found that models including land-use covariates performed significantly better than climate-only models and that these projected more suitable habitat than climate-only models. Static land-use models projected more suitable habitat than both the dynamic and hybrid models under SSP126, while these models did not differ under SSP585. China's panda reserve system was projected to effectively maintain suitable habitat inside PAs. Panda dispersal ability also significantly impacted outcomes, with most models assuming unlimited dispersal forecasting range expansion and models assuming zero dispersal consistently forecasting range contraction. Our findings highlight that policies targeting improved land-use practices should be an effective means for offsetting some of the negative effects of climate change on pandas. As the effectiveness of PAs is projected to be maintained, we recommend the judicious management and expansion of the PA system to ensure the resilience of panda populations into the future.


Assuntos
Conservação dos Recursos Naturais , Ursidae , Animais , Ecossistema , Previsões , Mudança Climática
9.
Small ; 18(39): e2200602, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36002338

RESUMO

Ionic liquids (ILs) in nanoporous confinement are the core of many supercapacitors and batteries, where the mobility of the nanoconfined ILs is crucial. Here, by combining experiments based on impedance spectroscopy with molecular dynamics simulations, the mobility of a prototype IL in the nanopores of an isoreticular metal-organic framework (MOF)-series with different pore sizes is explored, where an external electric field is applied. It has been found that the conduction behavior changes tremendously depend on the pore size. For small-pore apertures, the IL cations and anions cannot pass the pore window simultaneously, causing the ions to mutually block the pores. This results in a strong concentration dependence of the ionic conduction, where the conduction drops by two orders of magnitude when filling the pores. For large-pore MOFs, the mutual hindrance of the ions in the pores is small, causing only a small concentration dependence. The cutoff between the large-pore and small-pore behavior is approximately the size of a cation-anion-dimer and increasing the pore diameter by only 0.2 nm changes the conduction behavior fundamentally. This study shows that the pore aperture size has a substantial effect on the mobility of ions in nanoporous confinement and has to be carefully optimized for realizing highly-mobile nanoconfined ILs.

10.
Opt Express ; 30(21): 38663-38673, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258425

RESUMO

Shortening pulse width can improve the power efficiency and data rate of a pulse position modulation (PPM) based underwater wireless optical communication (UWOC) system at a fixed average optical power, which is more suitable for the energy-limited underwater environment. As a common method to generate short pulses, gain switching has the advantages of a tunable switching frequency and simple structure, facilitating the generation of high-order PPM signals. However, the output characteristics of electrical gain switching seriously affect the demodulation of PPM signals and limit the data rate. To study the performance of gain switching on a PPM communication system, simulation models of the semiconductor laser diode and the driving circuit are built to describe the generation of electrical and optical pulses. The pulse width, pulse peak value, and peak position of optical pulses are analyzed under different symbol durations and PPM orders. Furthermore, a 64-PPM/150-Mbps UWOC system with a 200-ps optical pulse width is demonstrated by using a gain-switched blue GaN-based laser diode in a water tank. The peak average power ratio (PAPR) is 19.5 dB. Via the statistical analysis of experiment results and the output characteristics of electrical gain switching, the main factor limiting the data rate attributes to the time delay fluctuation of gain switching. To the best of our knowledge, this is the first time that gain switching has been experimentally demonstrated and analyzed in a high-order PPM based UWOC system.

11.
Opt Express ; 30(8): 12835-12847, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472911

RESUMO

In this paper, we propose a new approach to solve the radiative transfer equation (RTE) and determine the path loss for line-of-sight (LOS) propagation with laser diode sources in underwater wireless optical channels, which severely suffers from attenuation due to inevitable absorption and scattering. The scheme is based on an effective combination of Monte-Carlo (MC) simulation employed for dataset generation and a partially pruned deep neural network (PPDNN) utilized to predict the received optical power. First, a parallel MC algorithm is newly introduced and applied to speed up the dataset-generation process. Compared with the conventional single-step MC, the dataset-generation time of the parallel MC can be reduced by at least 95%. Meanwhile, a deep neural network (DNN) is partially pruned to acquire a compact structure and adopted to predict the path loss in three typical water types. The simulation results yield that the mean square errors (MSEs) between the predictive and the reference ones are all lower than 0.2, while the sparsity of the original DNN's weights can be appropriately increased to 0.9, 0.7, and 0.5 for clear water, coastal water, and harbor water, respectively. Finally, the occupied storage space of the original DNN can be dramatically compressed by at least 40% with a small performance penalty. In view of this, the received optical power under certain parameters could be instantly obtained by employing the proposed PPDNN, which can effectively help design underwater wireless optical communication systems in future work.

12.
Opt Express ; 30(2): 1709-1722, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209331

RESUMO

In this paper, a quasi-omnidirectional transmitter is proposed and demonstrated for underwater wireless optical communication (UWOC) using the photoluminescence of perovskite quantum dots (QDs). The proposed transmitter, without complex driving circuits, is compact and reliable thanks to the lens-free design. The system performance is tested in a 50-m swimming pool with a water attenuation coefficient of 0.38 dB/m. The maximum data rates of on-off-keying (OOK) signals over 10-m and 20-m transmission distances can reach 60 Mbps and 40 Mbps, respectively. When four clients are adopted in a code division multiple access (CDMA) based UWOC network, the maximum data rates of each client can reach 10 Mbps and 7.5 Mbps over 10-m and 20-m underwater channels, respectively. The system can meet the requirements of the last meter end-user access in the Internet of underwater things (IoUT) and underwater optical cellular network systems.

13.
Opt Express ; 30(17): 30233-30245, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242131

RESUMO

A pulsed fiber master oscillator power amplifier (MOPA), which is combined with second harmonic generation (SHG) and modulated by directly changing the current of the low-power seed laser, is designed in this paper to overcome the 'green gap' of semiconductor lasers and the difficulty of obtaining high-power and wide-bandwidth driving circuits. To decrease the guard slot and increase the data rate of a high-order pulse position modulation (PPM) system, pre-pulse shaping (PPS) is utilized to decrease the fluctuation of pulse power, which is caused by the gain dynamics of multi-order amplification of the MOPA, from 55.6% to 27.5% for 25-ns pulses and from 22.4% to 16.7% for 10-ns pulses, respectively. Moreover, an analog PPM demodulation method is proposed to mitigate the nonlinear effect caused by space charge limitations at dynodes of a photomultiplier tube (PMT) and increase the robustness of the system. In an optical darkroom, a 99-m 64-PPM UWOC transmission, of which the measured link loss is around 13.16 attenuation length (AL), is realized in a water tank with a data rate of 9.14 Mbps. The average received optical power ranges from -60.87 to -52.51 dBm, corresponding to a bit error rate (BER) range of 1.93 × 10-4 to 2.3 × 10-3. To further prove the reliability of the proposed system, we implement a 65-m UWOC experiment with the same data rate at a BER of 3.42 × 10-4 in a 50-m standard swimming pool. The maximum link loss is measured to be 15 AL.

14.
Langmuir ; 38(43): 13103-13108, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206525

RESUMO

Smart and photoresponsive materials and thin films allow the dynamic remote control of their central properties. By incorporation of photochromic molecules in nanoporous metal-organic frameworks (MOFs), the interaction between the MOF host and the guest molecules in the pores can be modified. Here, a MOF film of type UiO-68 is presented in which the photoswitchable feature is added by embedment of photochromic fulgide molecules of type Aberchrome 670 in the pores. The photoisomerization in the pores is explored by UV-vis and infrared spectroscopy, and the transient uptake of toluene and methanol probe molecules is explored using a quartz crystal microbalance. For the first time, a fulgide-based nanoporous material is used to remote-control the adsorption and diffusion properties. We find that the toluene uptake amount can be increased by 37% and the toluene diffusion coefficient can be increased by 40% when reversibly photoswitching the embedded fulgide from its E-form to C-form. In this way, this study aims to contribute to the field of light-responsive nanoporous materials and thus expands the range of smart coatings.

15.
Phys Chem Chem Phys ; 24(6): 3994-4001, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35103267

RESUMO

The mass transfer of the guest molecules in the pores is fundamental for the application of nanoporous materials like metal-organic frameworks, MOFs. In the present work, we explore the uptake and release of toluene in a series of Zr-based MOFs with different pore sizes. We find that intermolecular guest-guest interaction, sterically controlled by the pore size, has a substantial impact on the release kinetics. While the adsorption is rather fast, the desorption process is many orders of magnitude slower. Depending on the pore size, molecular clusters form, here (most likely) toluene dimers, which are rather stable and their break-up is rate-limiting during the desorption process. This results in a step-like desorption kinetics, deviating from the plain Fickian-diffusion-controlled release. Temperature-dependent experiments show that the minimum and maximum of the release rates are obtained at the same toluene loadings, independent of the temperature. Moreover, the activation energy for the release coincides with the binding energy of a toluene dimer. The work shows the importance of intermolecular guest-guest interaction, controlled by the MOF-nanoconfinement, for the uptake and release from nanoporous materials.

16.
Environ Res ; 212(Pt C): 113395, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513064

RESUMO

Oily wastewater produced in the process of oil extraction has a potential threat to the environment. In this paper, diethylenetriamine was used to modify rice straw powder (RSP) by a solvent-free strategy, and the obtained product (AM-RSP) was utilized to dispose oily wastewater. AM-RSP was characterized by Field emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FT-IR) and BET. The factors affecting the demulsification performance (DP) such as dosage, salinity and pH value were detailly investigated. The results indicated that light transmittance (ET) and oil removal rate (ER) of separated water could reach 93.5% and 96.5%, respectively, within 40 min with 150 mg/L of AM-RSP at room temperature. Also, AM-RSP had a good salt resistance. In addition, three-phase contact angle (TCA), formation of interfacial film, interfacial activity, dynamic interfacial tension (IFT), coalescence time of droplets and zeta potential were adopted to probe the demulsification mechanism.


Assuntos
Óleos , Águas Residuárias , Poliaminas , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química
17.
Appl Opt ; 61(1): 41-48, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200800

RESUMO

In order to reduce turbulence-induced scintillation and deal with alignment problems, a 2×2 multiple-input multiple-output (MIMO) underwater wireless optical communication (UWOC) system is proposed and experimentally demonstrated. With help of the large divergence angle of light beams and large field of view (FOV) of the detectors, the effect of high-density air bubbles is greatly eliminated. Simulation and experimental results confirm that, in most intensity-modulation/direct-detection (IM/DD) MIMO-UWOC systems, the repetition coding (RC) scheme performs better than the space-time block coding (STBC) scheme. In a 50 m swimming pool, the maximum horizontal offset can reach 97.9 cm, which is 421% and 192% higher than that of STBC multiple-input single-output (MISO) and RC-MISO/STBC-MIMO schemes, respectively. With a data rate of 233 Mbps and a transmission distance of 50 m, the large detection range can meet a variety of underwater wireless communication requirements. The experiment indicates that, when the difference in the transmission distance between the two optical signals is higher than 1 m, the bit error rate (BER) of the RC scheme increases sharply, while the BER of the STBC scheme is stable. The MIMO coding scheme needs to be selected according to the actual application environment.

18.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235140

RESUMO

To build a portable and sensitive method for monitoring the concentration of the flavonoid rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conventional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively. The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in detail, with the analytical performances investigated. Due to the electroactive groups of rutin, and the specific π-π stacking and cation-π interaction between the nanocomposite with rutin, the electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L-1 to 220.0 µmol L-1 and the detection limit of 0.33 nmol L-1 (S/N = 3). Finally, two kinds of sensors were applied to test the real samples with satisfactory results.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Nanocompostos , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Nanocompostos/química , Nitrogênio , Polímeros , Rutina/química
19.
Opt Express ; 29(20): 32228-32243, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615299

RESUMO

Linear and nonlinear impairments in underwater wireless optical communication (UWOC) systems caused by the limited bandwidth and nonlinearity of devices severely degrade the system performance. In this paper, we propose a sparse Volterra series model-based nonlinear post equalizer with greedy algorithms to mitigate the nonlinear impairments and the inter-symbol interference (ISI) in a UWOC system. A variable step size generalized orthogonal matching pursuit (VSgOMP) algorithm that combines generalized orthogonal matching pursuit (gOMP) and adaptive step size method is proposed and employed to compress the Volterra equalizer with low computational cost. A maximum data rate of 500 Mbps is realized with the received optical power of -32.5 dBm in a 7-m water tank. In a 50-m swimming pool, a data rate of 500 Mbps over 200-m underwater transmission is achieved with a BER lower than the forward error correction (FEC) threshold of 3.8 × 10-3. The number of kernels of the sparse Volterra equalizer is reduced to 70% of that of the traditional Volterra equalizer without significant BER performance degradation. Compared with orthogonal matching pursuit (OMP) scheme and regularized orthogonal match pursuit (ROMP) scheme, the VSgOMP scheme reduces the running time by 68.6% and 29.2%, respectively. To the best of our knowledge, this is the first time that a sparse Volterra equalizer combined with VSgOMP algorithm is employed for the nonlinear equalization in a long-distance high-speed UWOC system.

20.
Langmuir ; 37(22): 6728-6735, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34034488

RESUMO

Superhydrophobic surfaces with high adhesion provide high potential for underwater applications. Inspired by Salvinia leaf, here, we have reported a simple method for fabricating adhesive Salvinia-like micropillars via photolithography and spontaneous adsorption of organic molecules from the atmosphere. With continuous hydrocarbon adsorption on sputtered cerium dioxide (CeO2) films, the surface gradually evolved and eventually became chemically heterogeneous. Huge wetting contrast from superhydrophilic to superhydrophobic over exposure time was observed; meanwhile, the wetting mode changed from the Wenzel (W) state to Cassie-Baxter (C-B) state. As a result, hydrophobic hydrocarbons (C-C/C-H) and trapped air between adjacent pillars contributed to the high apparent contact angle (CA), while the hydrophilic domains of C-O/O═C-O and CeO2 on the top layer made the surface highly adhesive with water droplets. In comparison with traditional fluorinated superhydrophobic surfaces, CeO2-coated surfaces showed high adhesive force with water droplets and can be used as a "mechanical hand" for water droplet transport. The adsorption-induced Salvinia-like micropillars with high adhesion may find many other droplet-based applications in microfluidic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA