Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 24(1): 55, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683034

RESUMO

BACKGROUND: There are many reports on the treatment of sacroiliac joint dysfunction by manipulation of oblique pulling (MOP). However, the specific mechanism of MOP on the sacroiliac joint remains unclear. This study aimed to investigate the effect of MOP on the biomechanics of the sacroiliac joint and the effect of the anterior sacroiliac ligament on the stability of the sacroiliac joint. METHODS: First, MOP-F1 (F: force) and MOP-F2 were applied to nine cadaveric pelvises. Then, segmental resection of the anterior sacroiliac ligament was performed. The range of motion of the sacroiliac joint was observed in all procedures. RESULTS: Under MOP-F1 and F2, the average total angles were 0.84° ± 0.59° and 1.52° ± 0.83°, and the displacements were 0.61 ± 0.21 mm and 0.98 ± 0.39 mm, respectively. Compared with MOP-F1, MOP-F2 caused greater rotation angles and displacements of the sacroiliac joint (p = 0.00 and p = 0.01, respectively). In addition, the rotation angles and displacements of the sacroiliac joint significantly increased after complete resection of the anterior sacroiliac ligament (p = 0.01 and p = 0.02, respectively). The increase was mainly due to the transection of the upper part of the anterior sacroiliac ligament. CONCLUSIONS: MOP-F2 caused greater rotation angles and displacements of the sacroiliac joint and was a more effective manipulation. The anterior sacroiliac ligament played an important role in maintaining the stability of the sacroiliac joint; the upper part of the anterior sacroiliac ligament contributed more to the stability of the joint than the lower part.


Assuntos
Instabilidade Articular , Articulação Sacroilíaca , Humanos , Fenômenos Biomecânicos , Articulação Sacroilíaca/cirurgia , Instabilidade Articular/cirurgia , Cadáver , Ligamentos Articulares/cirurgia , Rotação , Amplitude de Movimento Articular , Articulação do Joelho/cirurgia
2.
Medicina (Kaunas) ; 59(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512088

RESUMO

Background and Objectives: Notch is a fascinating signaling pathway. It is extensively involved in tumor growth, cancer stem cells, metastasis, and treatment resistance and plays important roles in metabolic regulation, tumor microenvironment, and tumor immunity. However, the role of Notch in ovarian cancer (OC) has yet to be fully understood. Therefore, this study systematically described the expression, mutation, and copy number variation of genes in the Notch signaling pathway in OC and evaluated the relationship between gene mutation and Overall Survival (OS) prognosis. Materials and Methods: Notch risk score (NTRS) was established by univariate Cox regression analysis combined with Lasso regression analysis, and the efficacy of NTRS in predicting prognosis and immunotherapy response in patients with OC was verified. We further assessed the correlations of NTRS with clinical features, immune infiltration level, immune checkpoint expression, and immune characteristics. Additionally, differential expression and functions of the fourteen signature genes were confirmed via vitro assays. Results: The results showed that Notch genes (NTGs) were markedly differentiated between tumor and normal tissues, which may help to explain the high heterogeneity in the biological characteristics and therapeutic outcomes of human OC. A Notch risk (NTR) prognostic model based on 11 key NTGs was successfully constructed. Tumors with high Notch risk scores (NTRS) were independently associated with shorter overall survival and poorer immunotherapy outcomes. We further assessed the correlations of NTRS with immune characteristics. The results showed that NTGs play a key role in regulating the tumor immune microenvironment. Additionally, we validated the baseline and induced expressions of 14 prognosis-related NTGs in our own OC samples. In vitro assays confirmed that the knockdown of NCOR2 and APH1B and overexpression of HEY2 and SKP2 could inhibit the proliferation, invasion, and migration of OC cells. Conclusions: These findings emphasize that Notch multilayer changes are associated with the prognosis of patients with OC and the characteristics of immune cell infiltration. Our predictive signature may predict the prognosis and immunotherapy response of OC patients in an independent manner. NCOR2, APH1B, HEY2, and SKP2 may more prominently represent important indicators to improve patient prognosis.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Prognóstico , Diferenciação Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Microambiente Tumoral/genética
3.
Cancer Cell Int ; 20: 500, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061852

RESUMO

BACKGROUND: Cervical cancer is the second leading cause of death in women 20-39 years old. Because coverage for cervical cancer screening is low, and the vaccination rate of human papillomavirus (HPV) is poor in some countries, potential markers to detect the disease at early stages are needed. E2F transcription factors (E2Fs) are a family of transcription factors that function in cell proliferation, differentiation, apoptosis, and tumorigenesis. As abnormal activation and regulation of E2Fs are related to tumor development and poor prognosis, we performed bioinformatic analyses and in vitro assays to evaluate the role of E2Fs in cervical cancer. METHODS: Transcriptional expression of E2Fs was initially evaluated in silico using ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA), followed by evaluation of E2F1/2/7/8 protein levels using immunohistochemistry in 88 patient tissues. E2F2 and E2F7 mRNA levels were measured by RT-qPCR. LinkedOmics and Metascape were used to predict functions of E2Fs, and in vitro experiments were performed to assess the tumorigenic role of E2F2 and E2F7. RESULTS: In silico analysis showed that E2F1/2/7/8 were significantly overexpressed in cervical cancer, findings which were confirmed at the protein level using immunohistochemistry. Further, upregulation of E2F1/2/7/8 was associated with different clinicopathological prognostic factors, including positivity for lymph vessel invasion and deep invasion of cervical stroma. Increased expression of E2F1/2/7/8 was also related to shorter overall survival (OS) and disease-free survival (DFS) in patients with cervical cancer. Using multivariate analysis, we confirmed E2F1/2/7/8 as independent prognostic factors for shorter OS of patients with cervical cancer. Finally, in vitro experiments showed that E2F2 and E2F7 are involved in cell proliferation and migration and cell cycle regulation in both HPV-positive and HPV-negative cervical cancer cells. CONCLUSIONS: E2F1/2/7/8 may be prognostic biomarkers for survival of patients with cervical cancer. E2F2 and E2F7 are involved in cell proliferation, migration, and cell cycle in both HPV-positive and HPV-negative cervical cancer cells.

4.
J Healthc Eng ; 2023: 2840421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636670

RESUMO

Objective: Clinical studies have found that manipulation of oblique pulling has a good clinical effect on sacroiliac joint pain. However, there is no uniform standard for manipulation of oblique pulling at present. The purpose of this study was to investigate the effects of four manipulations of oblique pulling on sacroiliac joint and surrounding ligaments. Methods: A three-dimensional finite element model of the pelvis was established. Four manipulations of oblique pulling were simulated. The stresses and displacements of sacroiliac joint and the strains of surrounding ligaments were analyzed under four manipulations of oblique pulling. Results: Manipulation of oblique pulling F2 and F3 caused the highest and lowest stress on the pelvis, at 85.0 and 52.6 MPa, respectively. Manipulation of oblique pulling F3 and F1 produced the highest and lowest stress on the left sacroiliac joint, at 6.6 and 5.6 MPa, respectively. The four manipulations of oblique pulling mainly produced anterior-posterior displacement. The maximum value was 1.21 mm, produced by manipulation of oblique pulling F2, while the minimal value was 0.96 mm, produced by manipulation of oblique pulling F3. The four manipulations of oblique pulling could all cause different degrees of ligament strain, and manipulation of oblique pulling F2 produced the greatest ligament strain. Conclusions: The four manipulations of oblique pulling all produced small displacements of sacroiliac joint. However, they produced different degrees of ligament strain. Manipulation of oblique pulling F2 produced the largest displacement of sacroiliac joint and the greatest ligament strain, which could provide a certain reference for physiotherapists.


Assuntos
Ligamentos , Pelve , Articulação Sacroilíaca , Humanos , Fenômenos Biomecânicos , Análise de Elementos Finitos
5.
Adv Healthc Mater ; 12(20): e2300153, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36933000

RESUMO

The tumor microenvironment (TME) is a complex and variable region characterized by hypoxia, low pH, high redox status, overexpression of enzymes, and high-adenosine triphosphate concentrations. In recent years, with the continuous in-depth study of nanomaterials, more and more TME-specific response nanomaterials are used for tumor treatment. However, the complexity of the TME causes different types of responses with various strategies and mechanisms of action. Aiming to systematically demonstrate the recent advances in research on TME-responsive nanomaterials, this work summarizes the characteristics of TME and outlines the strategies of different TME responses. Representative reaction types are illustrated and their merits and demerits are analyzed. Finally, forward-looking views on TME-response strategies for nanomaterials are presented. It is envisaged that such emerging strategies for the treatment of cancer are expected to exhibit dramatic trans-clinical capabilities, demonstrating the extensive potential for the diagnosis and therapy of cancer.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Hipóxia , Microambiente Tumoral/fisiologia , Oxirredução
6.
Autoimmunity ; 56(1): 2281226, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010845

RESUMO

Tumor-secreted exosomes are critical for the functional regulation of tumor-associated macrophages (TAMs). This study aimed to explore how exosomes secreted by ovarian carcinoma cells regulate the phenotype and function of macrophages. Hypoxic treatment of A2780 cells was postulated to mimic the tumor microenvironment, and exosomes were co-cultured with TAMs. miR-1225-5p was enriched in hypoxic exosomes and contributed to M2 macrophage polarizationby modulating Toll-like receptor 2 expression (TLR2). Furthermore, hypoxia-treated macrophages promote ovarian cancer cell viability, migration, and invasion via the wnt/ß-catenin pathway. This study clarified that exosomal miR-1225-5p promotes macrophage M2-like polarization by targeting TLR2 to promote ovarian cancer, which may via the wnt/ß-catenin pathway.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Receptor 2 Toll-Like , Feminino , Humanos , Linhagem Celular Tumoral , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Microambiente Tumoral/genética , Via de Sinalização Wnt
7.
Biomed Pharmacother ; 161: 114529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002567

RESUMO

Curaxin CBL0137 was designed to regulate p53 and nuclear factor-κB simultaneously and exhibits antitumor activity by inhibiting tumor cell proliferation and inducing apoptosis in multiple cancers. However, whether CBL0137 can induce pyroptosis has not yet been reported. This study demonstrated that CBL0137 induces caspase-3/gasdermin E (GSDME)-dependent pyroptosis via the reactive oxygen species (ROS)/BAX pathway. In ovarian cancer cells, CBL0137 inactivated the chromatin remodeling complex which could facilitate chromatin transcription, leading to the decreased transcription of antioxidant genes and oxidation and causing increased ROS levels. BAX was recruited on the mitochondrial membrane by mitochondrial ROS and induced the release of cytochrome c to cleave caspase-3. This led to the cleavage of the N-terminal of GSDME to form pores on the cell membrane and induced pyroptosis. Results of in vivo experiments revealed that CBL0137 also had anti-tumor effects on ovarian cancer cells in vivo. Our study outcomes reveal the mechanisms and targets of CBL0137 inducing pyroptosis in ovarian cancer cells and indicate that CBL0137 is a promising therapeutic agent for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Piroptose , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Neoplasias Ovarianas/tratamento farmacológico
8.
Signal Transduct Target Ther ; 8(1): 420, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926722

RESUMO

BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico
9.
Adv Healthc Mater ; 11(21): e2201733, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36050895

RESUMO

Manganese (Mn) has attracted widespread attention due to its low-cost, nontoxicity, and valence-rich transition. Various Mn-based nanomaterials have sprung up and are employed in diverse fields, particularly Mn-based nanozymes, which combine the physicochemical properties of Mn-based nanomaterials with the catalytic activity of natural enzymes, and are attracting a surge of research, especially in the field of biomedical research. In this review, the typical preparation strategies, catalytic mechanisms, advances and perspectives of Mn-based nanozymes for biomedical applications are systematically summarized. The application of Mn-based nanozymes in tumor therapy and sensing detection, together with an overview of their mechanism of action is highlighted. Finally, the prospective directions of Mn-based nanozymes from five perspectives: innovation, activity enhancement, selectivity, biocompatibility, and application broadening are discussed.


Assuntos
Manganês , Nanoestruturas , Manganês/química , Estudos Prospectivos , Catálise , Nanoestruturas/química , Íons
10.
Front Oncol ; 12: 945518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903691

RESUMO

Background: Ovarian cancer (OvCa) is a malignant disease of the female reproductive system with a high mortality rate. LncRNA has been confirmed to play a crucial role in the development and progression of various cancer types. Novel lncRNA ZFHX4-AS1 has been reported in several cancers, albeit its functional mechanisms in OvCa remain unclear. Methods: With reference to the public databases and based on integrating bioinformatics analyses, we explored the expression of ZFHX4-AS1 and its roles in the prognosis of OvCa. We employed the Kaplan-Meier curves to investigate the outcome of patients with different ZFHX4-AS1 expressions. Furthermore, its biological function and the related hallmark pathways were assessed through Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and Gene-set enrichment analysis (GSEA). We explored the correlation between lncRNA ZFHX4-AS1 and tumor-infiltrating immune cells through CIBERSORT. The immune checkpoints associated with lncRNA ZFHX4-AS1 and its related genes were investigated. The effect of lncRNA ZFHX4-AS1 on proliferation, invasion and migration of OvCa cells was verified through Cell Counting Kit (CCK)-8, colony formation, wound healing and transwell assays. Results: The expression of lncRNA ZFHX4-AS1 was upregulated in OvCa relative to that in normal tissues. Increased lncRNA ZFHX4-AS1 expression was associated with poor overall survival and progression-free survival in OvCa. The GO and KEGG pathway analyses revealed the role of lncRNA ZFHX4-AS1 in cell metabolism, protein synthesis, cell proliferation, and cell cycle. GSEA indicated the hallmark gene sets that were significantly enriched in the high and low expression groups. The CIBERSORT database revealed M2 macrophages, memory B-cells, naïve B cells, and activated NK cells were affected by lncRNA ZFHX4-AS1 expression (all P < 0.05). The expression of lncRNA ZFHX4-AS1 and its related differential genes MRPS11, NSA2, and MRPL13 were significantly correlated with the immune checkpoints. Knockdown of lncRNA ZFHX4-AS1 could inhibit the proliferation, invasion and migration of OvCa cells. Conclusions: The results suggested that lncRNA ZFHX4-AS1 is a novel prognostic biomarker associated with cell proliferation, metabolism, infiltration, and distribution of tumor-infiltrating immune cells in OvCa, indicating that lncRNA ZFHX4-AS1 can be used as a potential therapeutic target for OvCa in the future.

11.
J Colloid Interface Sci ; 627: 299-307, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35863189

RESUMO

Photothermal therapy (PTT) has been widely employed in tumor treatment due to the non-invasive, highly selective, and low toxic side effects. However, the limited penetration of laser couples with the metastasis and recurrence of tumors, thus failing to eliminate them. Here, we report that ceria-loaded gold@platinum (CeO2/Au@Pt) nanospheres modified with polyethylene glycol (PEG). exhibit dual enzymatic activities for photothermal-catalytic synergistic therapy of tumors. CeO2/Au@Pt nanospheres are constructed through the loading of ultra-small CeO2 into core-shell Au@Pt nanospheres. In such a construct, Au@Pt enables targeted PTT, thanks to exceptional photothermal properties, while CeO2 nanozymes alleviate tumor hypoxia and kill tumor cells by producing highly toxic hydroxyl radicals (·OH) based on catalase- and peroxidase-like activities. Synergistic photothermal-catalytic therapy is achieved by delivering nanozymes to the tumor microenvironment (TME) coupled with PTT. This photothermal-catalytic approach that combines simultaneous exogenous and endogenous activation is a potential option for tumor co-therapy.


Assuntos
Nanopartículas Metálicas , Nanosferas , Neoplasias , Catalase , Linhagem Celular Tumoral , Ouro/farmacologia , Ouro/uso terapêutico , Humanos , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Terapia Fototérmica , Platina/farmacologia , Polietilenoglicóis , Microambiente Tumoral
12.
Front Immunol ; 12: 763791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880862

RESUMO

Ovarian cancer (OC) is a devastating malignancy with a poor prognosis. The complex tumor immune microenvironment results in only a small number of patients benefiting from immunotherapy. To explore the different factors that lead to immune invasion and determine prognosis and response to immune checkpoint inhibitors (ICIs), we established a prognostic risk scoring model (PRSM) with differential expression of immune-related genes (IRGs) to identify key prognostic IRGs. Patients were divided into high-risk and low-risk groups according to their immune and stromal scores. We used a bioinformatics method to identify four key IRGs that had differences in expression between the two groups and affected prognosis. We evaluated the sensitivity of treatment from three aspects, namely chemotherapy, targeted inhibitors (TIs), and immunotherapy, to evaluate the value of prediction models and key prognostic IRGs in the clinical treatment of OC. Univariate and multivariate Cox regression analyses revealed that these four key IRGs were independent prognostic factors of overall survival in OC patients. In the high-risk group comprising four genes, macrophage M0 cells, macrophage M2 cells, and regulatory T cells, observed to be associated with poor overall survival in our study, were higher. The high-risk group had a high immunophenoscore, indicating a better response to ICIs. Taken together, we constructed a PRSM and identified four key prognostic IRGs for predicting survival and response to ICIs. Finally, the expression of these key genes in OC was evaluated using RT-qPCR. Thus, these genes provide a novel predictive biomarker for immunotherapy and immunomodulation.


Assuntos
Neoplasias Ovarianas/imunologia , Biologia Computacional , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Prognóstico , Modelos de Riscos Proporcionais
13.
Front Immunol ; 11: 577869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123161

RESUMO

Ovarian cancer is the most lethal gynecologic malignancy. Surgery and chemotherapy are the primary treatments for ovarian cancer; however, patients often succumb to recurrence with chemotherapeutic resistance within several years after the initial treatment. In the past two decades, immunotherapy has rapidly developed, and has revolutionized the treatment of various types of cancer. Despite the fact that immunotherapy response rates among ovarian cancer patients remain modest, treatment with immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR)- and TCR-engineered T cells is rapidly developing. Therapeutic efficiency could be improved significantly if immunotherapy is included as an adjuvant therapy, in combination with chemotherapy, radiation therapy, and the use of anti-angiogenesis drugs, and poly ADP ribose polymerase inhibitors (PARPi). Newly developed technologies that identify therapeutic targets, predict treatment efficacy, rapidly screen potential immunotherapy drugs, provide neoadjuvant immunotherapy, and utilize nanomedicine technology provide new opportunities for the treatment of ovarian cancer, and have the potential to prolong patient survival. However, important issues that may hinder the efficacy of such approaches, including hyperprogressive disease (HPD), immunotherapy-resistance, and toxicity of the treatments, including neurotoxicity, must be taken into account and addressed for these therapies to be effective.


Assuntos
Imunoterapia , Terapia Neoadjuvante , Neoplasias Ovarianas/terapia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Quimioterapia Adjuvante , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia Adotiva , Terapia Neoadjuvante/efeitos adversos , Terapia Viral Oncolítica , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Resultado do Tratamento , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA