Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077353

RESUMO

Natural polymer hydrogels have good mechanical properties and biocompatibility. This study designed hydroxyapatite-enhanced photo-oxidized double-crosslinked hydrogels. Hyaluronic acid (HA) and gelatin (Gel) were modified with methacrylate anhydride. The catechin group was further introduced into the HA chain inspired by the adhesion chemistry of marine mussels. Hence, the double-crosslinked hydrogel (HG) was formed by the photo-crosslinking of double bonds and the oxidative-crosslinking of catechins. Moreover, hydroxyapatite was introduced into HG to form hydroxyapatite-enhanced hydrogels (HGH). The results indicate that, with an increase in crosslinking network density, the stiffness of hydrogels became higher; these hydrogels have more of a compact pore structure, their anti-degradation property is improved, and swelling property is reduced. The introduction of hydroxyapatite greatly improved the mechanical properties of hydrogels, but there is no change in the stability and crosslinking network structure of hydrogels. These inorganic phase-enhanced hydrogels were expected to be applied to tissue engineering scaffolds.


Assuntos
Durapatita , Hidrogéis , Gelatina/química , Ácido Hialurônico/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543397

RESUMO

The relatively poor mechanical properties of extruded modified double base (EMDB) propellants limit their range of applications. To overcome these drawbacks, a novel method was proposed to introduce glycidyl azide polymer-based energetic thermoplastic elastomers (GAP-ETPE) with bonding groups into the propellant adhesive. The influence of the molecular structure of three kinds of elastomers on the mechanical properties of the resultant propellant was analyzed. It was found that the mechanical properties of the propellant with 3% CBA-ETPE (a type of GAP-ETPE that features chain extensions using N-(2-Cyanoethyl) diethanolamine and 1,4-butanediol) were improved at both 50 °C and -40 °C compared to a control propellant without GAP-ETPE. The elongation and impact strength of the propellant at -40 °C were 7.49% and 6.58 MPa, respectively, while the impact strength and maximum tensile strength of the propellant at 50 °C reached 21.1 MPa and 1.19 MPa, respectively. In addition, all three types of GAP-ETPE improved the safety of EMDB propellants. The friction sensitivity of the propellant with 3% CBA-ETPE was found to be 0%, and its characteristic drop height H50 was found to be 39.0 cm; 126% higher than the traditional EMDB propellant. These results provide guidance for studies aiming to optimize the performance of EMDB propellants.

3.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050373

RESUMO

Waterborne coatings have obtained more and more attention from researchers with increasing concerns in environmental protection, and have the advantages of being green, environmentally friendly and safe. However, the introduction of hydrophilic groups leads to lower hydrophobicity and it is difficult to meet the requirements of complex application environments. Herein, we proposed an optimization approach of waterborne polyurethane (WPU) with vinyl tris(ß-methoxyethoxy) silane (A172), and it was found that the surface roughness, mechanical properties, thermal stability and water resistance of WPU will be increased to a certain extent with the addition of A172. Moreover, the hydrophobicity of the coating film is best when the silicon content is 10% of the acrylic monomer mass and the water contact angle reaches 100°, which could exceed two-thirds of the research results in the last decade. Therefore, our study can provide some theoretical basis for the research of hydrophobic polyurethane coatings.

4.
Materials (Basel) ; 15(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143686

RESUMO

The research and development of rocket propellants with a high solid content and superior mechanical and security performance is urgently needed. In this paper, a novel extruded modified double-base (EMDB) rocket propellant plasticized by N-butyl-N-nitratoethyl nitramine (Bu-NENA) was prepared to overcome this challenge. The results indicated that Bu-NENA decreased the mechanical sensitivity successfully, contributing to the mechanical properties against traditional nitroglycerin (NG) based EMDB propellants, while hexogen (RDX), which is beneficial to propellant energy, was not conducive to the elongation and sensitivity of the propellants. By contrast with the blank group (NG-based EMDB propellant, R0), the elongation of the optimized propellant at -40 °C was promoted by 100% from 3.54% to 7.09%. Moreover, the ß-transition temperature decreased from -33.8 °C to -38.1 °C due to superior plasticization by Bu-NENA, which represents a better toughness. The friction sensitivity dropped by 100% from 46% to 0%. Simultaneously, the height for 50% probability of explosion (H50) increased by 87.2% from 17.2 cm to 32.2 cm. The results of this research could be used to predict a potential prospect in tactical weapons.

5.
Materials (Basel) ; 13(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751613

RESUMO

Aluminium (Al) powders of micron size are widely applied to energetic materials as a high energy fuel. However, its energy conversion efficiency is generally low due to low oxidation activity. In this paper, a polytetrafluoroethylene (PTFE) coating layer with both protection and activation action was successfully introduced onto the surface of Al via adsorption and following heat treatment. The preparation conditions were optimized and the thermal activity of this core-shell composite material was studied. The potential enhancement mechanism for Al oxidation was proposed. The results showed that PTFE powders deformed into membrane on the surface of Al after the sintering process. This polymer shell could act as an effective passivation layer protecting internal Al from oxidation during aging. The reduction in metallic Al of Al/PTFE was decreased by 84.7%, more than that in original spherical Al when the aging time is 60 days. Moreover, PTFE could react with Al resulting in a thin AlF3 layer, which could promote the destruction of Al2O3 shell. Thus, PTFE could enhance oxidation activity of micro-Al. The conversion of Al was increased by a factor of 1.8 when heated to 1100 °C. Improved aging-resistant performance and promoted oxidation activity of Al could potentially broaden its application in the field of energetic materials.

6.
Materials (Basel) ; 11(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423838

RESUMO

The safe storage time for double base propellant (DBP or DB propellant) with stabilizers could usually be calculated to be greater than 40 years. However, the actual service life is far below that, which is largely caused by the decline of propellant mechanical performance. In this work polytetrafluoroethylene (PTFE) was introduced into the double base propellant formula as an additive. The tensile properties of this propellant before and after artificial aging were determined. The evaporation and diffusion characteristics of nitroglycerin (NG) in propellant were evaluated by thermogravimetry analysis (TGA). The results showed that mechanical properties of propellant were improved due to PTFE, especially for elongation at -40 °C, which was greatly increased by 115%. Moreover, the results of TGA showed that NG migration was reduced due to PTFE, which delayed the decline of propellant mechanical performance during aging. The reduction in elongation at -40 °C caused by aging was decreased by 68.5% for PTFE modified DBP. Enhanced mechanical properties and reduced NG migration could potentially prolong propellant service life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA