Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 113(4): 665-676, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507655

RESUMO

The moss Physcomitrium patens is crucial for studying plant development and evolution. Although the P. patens genome includes genes acquired from bacteria, fungi and viruses, the functions and evolutionary significance of these acquired genes remain largely unclear. Killer protein 4 (KP4) is a toxin secreted by the phytopathogenic fungus Ustilago maydis that inhibits the growth of sensitive target strains by blocking their calcium uptake. Here, we show that KP4 genes in mosses were acquired from fungi through at least three independent events of horizontal gene transfer. Two paralogous copies of KP4 (PpKP4-1 and PpKP4-2) exist in P. patens. Knockout mutants ppkp4-1 and ppkp4-2 showed cell death at the protonemal stage, and ppkp4-2 also exhibited defects in tip growth. We provide experimental evidence indicating that PpKP4-1/2 affects P. patens protonemal cell development by mediating cytoplasmic calcium and that KP4 genes are functionally conserved between P. patens and fungi. The present study provides additional insights into the role of horizontal gene transfer in land plant development and evolution.


Assuntos
Briófitas , Bryopsida , Briófitas/metabolismo , Cálcio/metabolismo , Proteínas Fúngicas/genética , Fungos/metabolismo , Bryopsida/genética
2.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960485

RESUMO

At present, there is no clear design standard for segmental joints of large-diameter shield tunnels under high water pressure. In this paper, a theoretical calculation model for the bending stiffness of segmental joints under high water pressure is proposed. The numerical simulation method is used to investigate the failure and crack formation processes of single-layer and double-layer lining segments under large axial forces. The effects of axial force, bolt strength, and concrete strength on the bending stiffness of joints are then studied using a theoretical calculation model of segmental joints. The results show that under extremely high water pressure, the influence of double lining on joint stiffness is limited. It is more rational and safe to compute the bending stiffness of segmental joints using this theoretical model rather than the numerical simulation method. The parameter analysis reveals that increasing the bolt strength has a minor impact on bending stiffness and deformation, whereas increasing the concrete strength has the opposite effect. The influence of ultimate bearing capacity and deformation decreases non-linearly as the axial force increases.

3.
J Exp Bot ; 70(19): 5101-5114, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31340000

RESUMO

FRIGIDA (FRI), as the major regulator of flowering time in Arabidopsis accessions, can activate its target FLOWERING LOCUS C (FLC) to delay flowering before vernalization. In addition to FLC, other FRI targets also exist in Arabidopsis. Although leaves sense environmental cues to modulate flowering time, it is not known if roots also regulate the floral transition. In this study, we investigated the spatio-temporal effect of FRI on flowering time. Local expression of FRI in the phloem and leaves activated FLC to delay flowering. Furthermore, we found that local expression of FRI in the roots also delayed flowering by activating other targets, MADS AFFECTING FLOWERING4 (MAF4) and MAF5, in the roots. Graft and genetic experiments revealed that the spatial expression of FRI in the root might generate a mobile signal, which is transmitted from roots to shoot and antagonizes the FT signal to delay flowering. Specifically expressing FRI in the embryo efficiently delayed flowering, even expressing FRI as early as the pro-embryo stage is enough to up-regulate FLC expression to delay flowering. Together, our findings demonstrate the spatio-temporal effect of FRI on delaying flowering, and we propose that root tissue also perceives the flowering signal to fine-tune the flowering time through MAF4/5 as novel targets of FRI.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética
4.
Plant Cell ; 26(12): 4763-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25538183

RESUMO

Winter-annual accessions of Arabidopsis thaliana require either exposure to cold stress or vernalization to initiate flowering via FRIGIDA (FRI). FRI acts as a scaffold protein to recruit several chromatin modifiers that epigenetically modify flowering genes. Here, we report that proteasome-mediated FRI degradation regulates flowering during vernalization in Arabidopsis. Our genetic and biochemical experiments demonstrate that FRI directly interacts with the BTB (Bric-a-Brac/Tramtrack/Broad Complex) proteins LIGHT-RESPONSE BTB1 (LRB1) and LRB2 as well as the CULLIN3A (CUL3A) ubiquitin-E3 ligase in vitro and in vivo, leading to proteasomal degradation of FRI during vernalization. The degradation of FRI is accompanied by an increase in the levels of the long noncoding RNA ColdAIR, which reduces the level of histone H3Lys4 trimethylation (H3K4me3) in FLOWERING LOCUS C chromatin to promote flowering. Furthermore, we found that the cold-induced WRKY34 transcription factor binds to the W-box in the promoter region of CUL3A to modulate CUL3A expression. Deficiency of WRKY34 suppressed CUL3A transcription to enhance FRI protein stability and led to late flowering after vernalization. Conversely, overexpression of WRK34 promoted FRI degradation and early flowering through inducing CUL3A accumulation. Together, these data suggest that WRKY34-induced and CUL3A-dependent proteolysis of FRI modulate flowering in response to vernalization.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Culina , Flores/genética , Flores/metabolismo , Flores/fisiologia , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Ubiquitinação
5.
Plant Commun ; 4(3): 100513, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36578211

RESUMO

Despite decades of efforts in genome sequencing and functional characterization, some important protein families remain poorly understood. In this study, we report the classification, evolution, and functions of the largely uncharacterized AIM24 protein family in plants, including the identification of a novel subfamily. We show that two AIM24 subfamilies (AIM24-A and AIM24-B) are commonly distributed in major plant groups. These two subfamilies not only have modest sequence similarities and different gene structures but also are of independent bacterial ancestry. We performed comparative functional investigations on the two AIM24 subfamilies using three model plants: the moss Physcomitrium patens, the liverwort Marchantia polymorpha, and the flowering plant Arabidopsis thaliana. Intriguingly, despite their significant differences in sequence and gene structure, both AIM24 subfamilies are involved in ER stress tolerance and the unfolded protein response (UPR). In addition, transformation of the AIM24-A gene from P. patens into the AIM24-B null mutant of A. thaliana could at least partially rescue ER stress tolerance and the UPR. We also discuss the role of AIM24 genes in plant development and other cellular activities. This study provides a unique example of parallel evolution in molecular functions and can serve as a foundation for further investigation of the AIM24 family in plants.


Assuntos
Arabidopsis , Plantas , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Bases , Arabidopsis/genética , Arabidopsis/metabolismo
6.
Front Genet ; 13: 1015393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313445

RESUMO

Plant phospholipase D (PLD) exerts important roles in various biological processes, such as intracellular signaling and morphological development. Our knowledge about early land plant PLDs is still underdeveloped. In this study, we identified 84 PLD genes in six mosses, i.e., Physcomitrella patens, Ceratodon purpureus, Fontinalis antipyretica, Pleurozium schreberi, Sphagnum magellanicum, and Sphagnum fallax. These PLDs were classified into four clades (I-IV). We showed that PLD underwent rapid expansion in mosses. A total of six conserved domains and two core HKD motifs were detected. Structure analysis uncovered that the moss PLDs from within a clade generally exhibited similar exon-intron organization. Cis-elements prediction and expression analyses indicated that P. patens PLDs had key roles in stress responsiveness and plant development. Particularly, about half of the P. patens PLDs (e.g., PpPLD1, PpPLD2, and PpPLD5) were differentially expressed under biotic and abiotic stresses. We also determined the expression pattern of P. patens PLD genes in various tissues and at different stages of development. Although the moss, clubmoss, liverwort, and fern PLDs evolved largely under functional constraints, we found episodic positive selection in the moss PLDs, e.g., C. purpureus PLD2 and P. patens PLD11. We infer that the evolutionary force acting on the PLDs may have facilitated moss colonization of land. Our work provides valuable insights into the diversification of moss PLD genes, and can be used for future studies of their functions.

7.
Nat Commun ; 11(1): 2030, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332755

RESUMO

Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae-like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings provide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants.


Assuntos
Bryopsida/fisiologia , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/crescimento & desenvolvimento , Micorrizas/genética , Proteínas de Plantas/genética , Células-Tronco/fisiologia , Evolução Biológica , Epigênese Genética , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Genes de Plantas , Filogenia , Alinhamento de Sequência
8.
Nat Commun ; 11(1): 2896, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499564

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
J Renin Angiotensin Aldosterone Syst ; 19(2): 1470320318778898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29848151

RESUMO

The aim of this study was to investigate the protective effects of sulfur dioxide (SO2) on the endothelial function of the aorta in D-galactose (D-gal)-induced aging rats. Sprague Dawley rats were randomized into a D-gal group, a D-gal + SO2 group and a control group, then injected with D-gal, D-gal + SO2 donor or equivalent volumes of saline, respectively, for 8 consecutive weeks. After 8 weeks, the mean arterial pressure was significantly increased in the D-gal group, but was lowered by SO2. SO2 significantly ameliorated the endothelial dysfunction induced by D-gal treatment. The vasorelaxant effect of SO2 was associated with the elevated nitric oxide levels and upregulated phosphorylation of endothelial nitric oxide synthase. In the D-gal group, the concentration of angiotensin II in the plasma was significantly increased, but was decreased by SO2. Moreover, levels of vascular tissue hydrogen peroxide (H2O2) and malondialdehyde were significantly lower in SO2-treated groups than those in the D-gal group. Western blot analysis showed that the expressions of oxidative stress-related proteins (the angiotensin II type 1 receptor (AT1R), and nicotinamide adenine dinucleotide phosphate oxidase subunits) were increased in the D-gal group, while they were decreased after treatment with SO2. In conclusion, SO2 attenuated endothelial dysfunction in association with the inhibition of oxidative stress injury and the downregulation of the angiotensin II/AT1R pathway in D-gal-induced aging rats.


Assuntos
Envelhecimento/patologia , Angiotensina II/metabolismo , Regulação para Baixo/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Dióxido de Enxofre/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Galactose , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
10.
Front Plant Sci ; 9: 701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887874

RESUMO

Arbuscular mycorrhizal fungi (AMF) belong to Glomeromycotina, and are mutualistic symbionts of many land plants. Associated bacteria accompany AMF during their lifecycle to establish a robust tripartite association consisting of fungi, plants and bacteria. Physical association among this trinity provides possibilities for the exchange of genetic materials. However, very few horizontal gene transfer (HGT) from bacteria or plants to AMF has been reported yet. In this study, we complement existing algorithms by developing a new pipeline, Blast2hgt, to efficiently screen for putative horizontally derived genes from a whole genome. Genome analyses of the glomeromycete Rhizophagus irregularis identified 19 fungal genes that had been transferred between fungi and bacteria/plants, of which seven were obtained from bacteria. Another 18 R. irregularis genes were found to be recently acquired from either plants or bacteria. In the R. irregularis genome, gene duplication has contributed to the expansion of three foreign genes. Importantly, more than half of the R. irregularis foreign genes were expressed in various transcriptomic experiments, suggesting that these genes are functional in R. irregularis. Functional annotation and available evidence showed that these acquired genes may participate in diverse but fundamental biological processes such as regulation of gene expression, mitosis and signal transduction. Our study suggests that horizontal gene influx through endosymbiosis is a source of new functions for R. irregularis, and HGT might have played a role in the evolution and symbiotic adaptation of this arbuscular mycorrhizal fungus.

11.
Nat Commun ; 9(1): 1555, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674719

RESUMO

Early-diverging land plants such as mosses are known for their outstanding abilities to grow in various terrestrial habitats, incorporating tremendous structural and physiological innovations, as well as many lineage-specific genes. How these genes and functional innovations evolved remains unclear. In this study, we show that a dual-coding gene YAN/AltYAN in the moss Physcomitrella patens evolved from a pre-existing hemerythrin gene. Experimental evidence indicates that YAN/AltYAN is involved in fatty acid and lipid metabolism, as well as oil body and wax formation. Strikingly, both the recently evolved dual-coding YAN/AltYAN and the pre-existing hemerythrin gene might have similar physiological effects on oil body biogenesis and dehydration resistance. These findings bear important implications in understanding the mechanisms of gene origination and the strategies of plants to fine-tune their adaptation to various habitats.


Assuntos
Bryopsida/genética , Hemeritrina/genética , Proteínas de Plantas/genética , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/metabolismo , Briófitas/classificação , Briófitas/genética , Briófitas/metabolismo , Bryopsida/classificação , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Hemeritrina/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Fases de Leitura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA