Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Nature ; 584(7819): 115-119, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454513

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Linfócitos B/citologia , Linfócitos B/imunologia , Betacoronavirus/química , COVID-19 , Criança , Células Clonais/citologia , Células Clonais/imunologia , Reações Cruzadas , Cristalização , Cristalografia por Raios X , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Testes de Neutralização , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Plasma/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Genes Dev ; 32(19-20): 1344-1357, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30254108

RESUMO

A fundamental challenge in understanding cardiac biology and disease is that the remarkable heterogeneity in cell type composition and functional states have not been well characterized at single-cell resolution in maturing and diseased mammalian hearts. Massively parallel single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool to address these questions by interrogating the transcriptome of tens of thousands of nuclei isolated from fresh or frozen tissues. snRNA-seq overcomes the technical challenge of isolating intact single cells from complex tissues, including the maturing mammalian hearts; reduces biased recovery of easily dissociated cell types; and minimizes aberrant gene expression during the whole-cell dissociation. Here we applied sNucDrop-seq, a droplet microfluidics-based massively parallel snRNA-seq method, to investigate the transcriptional landscape of postnatal maturing mouse hearts in both healthy and disease states. By profiling the transcriptome of nearly 20,000 nuclei, we identified major and rare cardiac cell types and revealed significant heterogeneity of cardiomyocytes, fibroblasts, and endothelial cells in postnatal developing hearts. When applied to a mouse model of pediatric mitochondrial cardiomyopathy, we uncovered profound cell type-specific modifications of the cardiac transcriptional landscape at single-nucleus resolution, including changes of subtype composition, maturation states, and functional remodeling of each cell type. Furthermore, we employed sNucDrop-seq to decipher the cardiac cell type-specific gene regulatory network (GRN) of GDF15, a heart-derived hormone and clinically important diagnostic biomarker of heart disease. Together, our results present a rich resource for studying cardiac biology and provide new insights into heart disease using an approach broadly applicable to many fields of biomedicine.


Assuntos
Perfilação da Expressão Gênica , Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Transcriptoma , Animais , Cardiomiopatias/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Redes Reguladoras de Genes , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Doenças Mitocondriais/genética , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Análise de Sequência de RNA , Ativação Transcricional
3.
BMC Genomics ; 25(1): 189, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368357

RESUMO

BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.


Assuntos
Hemofilia A , Sequenciamento por Nanoporos , Camundongos , Animais , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Hemofilia A/genética , Hemofilia A/terapia , Edição de Genes/métodos , DNA
4.
Gastroenterology ; 165(1): 71-87, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030336

RESUMO

BACKGROUND & AIMS: Visceral smooth muscle cells (SMCs) are an integral component of the gastrointestinal (GI) tract that regulate GI motility. SMC contraction is regulated by posttranslational signaling and the state of differentiation. Impaired SMC contraction is associated with significant morbidity and mortality, but the mechanisms regulating SMC-specific contractile gene expression, including the role of long noncoding RNAs (lncRNAs), remain largely unexplored. Herein, we reveal a critical role of Carmn (cardiac mesoderm enhancer-associated noncoding RNA), an SMC-specific lncRNA, in regulating visceral SMC phenotype and contractility of the GI tract. METHODS: Genotype-Tissue Expression and publicly available single-cell RNA sequencing (scRNA-seq) data sets from embryonic, adult human, and mouse GI tissues were interrogated to identify SMC-specific lncRNAs. The functional role of Carmn was investigated using novel green fluorescent protein (GFP) knock-in (KI) reporter/knock-out (KO) mice. Bulk RNA-seq and single nucleus RNA sequencing (snRNA-seq) of colonic muscularis were used to investigate underlying mechanisms. RESULTS: Unbiased in silico analyses and GFP expression patterns in Carmn GFP KI mice revealed that Carmn is highly expressed in GI SMCs in humans and mice. Premature lethality was observed in global Carmn KO and inducible SMC-specific KO mice due to GI pseudo-obstruction and severe distension of the GI tract, with dysmotility in cecum and colon segments. Histology, GI transit, and muscle myography analysis revealed severe dilation, significantly delayed GI transit, and impaired GI contractility in Carmn KO vs control mice. Bulk RNA-seq of GI muscularis revealed that loss of Carmn promotes SMC phenotypic switching, as evidenced by up-regulation of extracellular matrix genes and down-regulation of SMC contractile genes, including Mylk, a key regulator of SMC contraction. snRNA-seq further revealed SMC Carmn KO not only compromised myogenic motility by reducing contractile gene expression but also impaired neurogenic motility by disrupting cell-cell connectivity in the colonic muscularis. These findings may have translational significance, because silencing CARMN in human colonic SMCs significantly attenuated contractile gene expression, including MYLK, and decreased SMC contractility. Luciferase reporter assays showed that CARMN enhances the transactivation activity of the master regulator of SMC contractile phenotype, myocardin, thereby maintaining the GI SMC myogenic program. CONCLUSIONS: Our data suggest that Carmn is indispensable for maintaining GI SMC contractile function in mice and that loss of function of CARMN may contribute to human visceral myopathy. To our knowledge this is the first study showing an essential role of lncRNA in the regulation of visceral SMC phenotype.


Assuntos
Contração Muscular , Músculo Liso , RNA Longo não Codificante , Animais , Humanos , Camundongos , Diferenciação Celular , Células Cultivadas , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Cancer Cell Int ; 24(1): 97, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443961

RESUMO

Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.

6.
Altern Ther Health Med ; 30(2): 154-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37856808

RESUMO

Objective: This study investigated the therapeutic effect of laparoscopic surgery combined with the plasma electric cutting knife on patients diagnosed with rectal cancer and its impact on serum inflammatory factors in the bloodstream. Methods: The researchers examined the clinical data of 85 patients who underwent laparoscopic low anterior resection for rectal cancer in our hospital from April 2020 to December 2021. The patients comprised two groups: an observation group of 40 cases and a control group of 45 cases. The CD3+, CD4+, CD8+, and CD4+/CD8+ levels in both groups were detected using flow cytometry. The levels of relevant inflammatory factors in serum were measured using an automatic biochemical analyzer. The researchers then compared the perioperative outcomes between the two groups. Results: The observation group demonstrated significantly shorter duration for the first time passing gas after surgery (P = .029) and hospital stays (P = .002) than the control group. Both groups experienced decreased levels of CD8+ cells following treatment, with the observation group exhibiting lower levels than the control group (P < .05). After three months of treatment, both groups showed reduced levels of relevant serum inflammatory factors, TNF-α, IL-1, IL-6, and IL-8; however, the observation group was significantly lower than the control group with statistical significance (P < .05). Similarly, after three months of treatment, both groups exhibited lower levels of relevant serum electrolytes K+, Na+, and Cl-, with the observation group having lower levels than the control group (P < .05). Throughout the 12-month follow-up period, the two groups had no significant differences (P > .05) in complications such as urinary tract infection, anastomotic leakage, or anastomotic bleeding. Conclusion: Using a combination of laparoscopic techniques and a plasma electric cutting knife proved a highly effective surgical approach in treating rectal cancer. The method has numerous advantages, such as enhanced safety and few complications. When considering perioperative complications, it was evident that laparoscopic combined with the plasma electric cutting knife surpassed other surgical methods in treating rectal cancer.


Assuntos
Laparoscopia , Neoplasias Retais , Humanos , Estudos Retrospectivos , Laparoscopia/efeitos adversos , Fístula Anastomótica/etiologia , Fístula Anastomótica/cirurgia , Neoplasias Retais/cirurgia , Neoplasias Retais/complicações , Inflamação
7.
Palliat Support Care ; : 1-7, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736428

RESUMO

OBJECTIVES: In Chinese culture, family members are the main decision maker on end-of-life (EoL) issues for patients with advanced cancer. Yet little is known about Chinese families' confidence in making EoL decisions and its associated factors. This study aims to investigate the status and associated factors of Chinese family members' confidence in making EoL decisions for patients with advanced cancer. METHODS: This cross-sectional study used a convenience sample of 147 family members of patients with stage III or stage IV cancer from a tertiary cancer center in Guangzhou, China. The questionnaires included demographic information of patients and their family members, patients' EoL preferences, and the Chinese version of the Family Decision-Making Self-Efficacy (FDMSE) Scale. RESULTS: A total of145 family members (98.64%) completed the questionnaires. The average score of FDMSE was 3.92 ± 0.53. A multiple regression analysis showed that the factors associated with FDMSE included patients' duration of disease, health insurance, participation in EoL decision-making, the expression of unfilled wishes, and family members' employment status. SIGNIFICANCE OF RESULTS: Chinese family members were not confident enough in making EoL decisions for patients with advanced cancer. It is recommended to develop cultural-tailored advanced care planning models to clarify patient preferences and to enhance the family members' self-efficacy in making EoL decisions with or for patients with advanced cancer.

8.
Anal Chem ; 95(2): 638-649, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36599407

RESUMO

Data-dependent acquisition (DDA) mode in ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) can provide massive amounts of MS1 and MS/MS information of compounds in untargeted metabolomics and can thus facilitate compound identification greatly. In this work, we developed a new platform called AntDAS-DDA for the automatic processing of UHPLC-HRMS data sets acquired under the DDA mode. Several algorithms, including extracted ion chromatogram extraction, feature extraction, MS/MS spectrum construction, fragment ion identification, and MS1 spectrum construction, were developed within the platform. The performance of AntDAS-DDA was investigated comprehensively with a mixture of standard and complex plant data sets. Results suggested that features in complex sample matrices can be extracted effectively, and the constructed MS1 and MS/MS spectra can benefit in compound identification greatly. The efficiency of compound identification can be improved by about 20%. AntDAS-DDA can take full advantage of MS/MS information in multiple sample analyses and provide more MS/MS spectra than single sample analysis. A comparison with advanced data analysis tools indicated that AntDAS-DDA may be used as an alternative for routine UHPLC-HRMS-based untargeted metabolomics. AntDAS-DDA is freely available at http://www.pmdb.org.cn/antdasdda.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Íons , Análise de Dados
9.
BMC Cancer ; 23(1): 1037, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884929

RESUMO

The emergence of image-based systems to improve diagnostic pathology precision, involving the intent to label sets or bags of instances, greatly hinges on Multiple Instance Learning for Whole Slide Images(WSIs). Contemporary works have shown excellent performance for a neural network in MIL settings. Here, we examine a graph-based model to facilitate end-to-end learning and sample suitable patches using a tile-based approach. We propose MIL-GNN to employ a graph-based Variational Auto-encoder with a Gaussian mixture model to discover relations between sample patches for the purposes to aggregate patch details into an individual vector representation. Using the classical MIL dataset MUSK and distinguishing two lung cancer sub-types, lung cancer called adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), we exhibit the efficacy of our technique. We achieved a 97.42% accuracy on the MUSK dataset and a 94.3% AUC on the classification of lung cancer sub-types utilizing features.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Redes Neurais de Computação
10.
Pharmacol Res ; 196: 106916, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690533

RESUMO

In the wake of the development of metagenomic, metabolomic, and metatranscriptomic approaches, the intricate interactions between the host and various microbes are now being progressively understood. Numerous studies have demonstrated evident changes in gut microbiota during the process of a variety of diseases, such as diabetes, obesity, aging, and cancers. Notably, gut microbiota is viewed as a potential source of novel therapeutics. Currently, Next-generation probiotics (NGPs) are gaining popularity as therapeutic agents that alter the gut microbiota and affect cancer development. Akkermansia muciniphila (A. muciniphila), a representative commensal bacterium, has received substantial attention over the past decade as a promising NGP. The components and metabolites of A. muciniphila can directly or indirectly affect tumorigenesis, in particular through its effects on antitumor immunosurveillance, including the stimulation of pattern recognition receptors (PRRs), which also leads to better outcomes in a variety of situations, including the prevention and curation of cancers. In this article, we systematically summarize the role of A. muciniphila in tumorigenesis (involving gastrointestinal and non-gastrointestinal cancers) and in tumor therapy. In particular, we carefully discuss some critical scientific issues that need to be solved for the future using A. muciniphila as a representative beneficial bacterium in tumor treatment, which might provide bright clues and assistance for the application of drugs targeting A. muciniphila in clinical oncotherapy.

11.
Inflamm Res ; 72(3): 531-540, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36633616

RESUMO

BACKGROUND: Endotoxin tolerance (ET) is a protective mechanism in the process of sepsis, septic shock, and their sequelae including uncontrolled inflammation. Accumulating evidence has shown that peripheral T cells contribute to the induction of ET. However, what and how T-cell development contributes to ET inductions remain unclear. METHODS: Mice were intraperitoneally injected with LPS at a concentration of 5 mg/kg to establish an LPS tolerance model and were divided into two groups: a group examined 72 h after LPS injection (72-h group) and a group examined 8 days after LPS injection (8-day group). Injection of PBS was used as a control. We performed high-throughput sequencing to analyze the characteristics and changes of CD4+SP TCRß CDR3 repertoires with respect to V direct to J rearrangement during the ET induction. Moreover, the proportion and proliferation, as well as surface molecules such as CD80 and CD86, of F4/80+ macrophages were analyzed using FCM. Furthermore, ACT assay was designed and administered by the tail vein into murine LPS-induced mouse model to evaluate the role of F4/80+ macrophages on the development of CD4+SP thymocytes in ET condition. RESULTS: We found that the frequency and characteristics of the TCRß chain CDR3 changed obviously under condition of ET, indicating the occurrence of TCR rearrangement and thymocyte diversification. Moreover, the absolute numbers of F4/80+ macrophages, but not other APCs, were increased in thymic medulla at 72-h group, accompanied by the elevated function-related molecules of F4/80+ macrophages. Furthermore, adoptively transferred OVA332-339 peptide-loaded macrophages into Rag-1-/- mice induced the clone deletion of OVA-specific CD4+SP, thereby ameliorating the pathology in lung tissue in LPS challenge. CONCLUSIONS: These data reveal that the frequency and characteristics of the TCRß chain CDR3 undergo dynamic programming under conditions of LPS tolerance. Furthermore, the peripheral macrophages may be a key factor which carry peripheral antigen to thymic medulla and affect the negative selection of T-cell population, thereby contributing to the formation of ET. These results suggest that the clone selection in thymus in ET may confer protection against microbial sepsis.


Assuntos
Tolerância à Endotoxina , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Linfócitos T , Timo , Receptores de Antígenos de Linfócitos T , Células Clonais
12.
J Immunol ; 206(12): 2900-2908, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34049969

RESUMO

The relatively low partial pressure of oxygen, reduced oxygen saturation, and aberrant plasma metabolites in COVID-19 may alter energy metabolism in peripheral immune cells. However, little is known regarding the immunometabolic defects of T cells in COVID-19 patients, which may contribute to the deregulated immune functions of these cells. In this study, we longitudinally characterized the metabolic profiles of resting and activated T cells from acutely infected and convalescent COVID-19 patients by flow cytometry and confirmed the metabolic profiles with a Seahorse analyzer. Non-COVID-19 and healthy subjects were enrolled as controls. We found that ex vivo T cells from acutely infected COVID-19 patients were highly activated and apoptotic and displayed more extensive mitochondrial metabolic dysfunction, especially cells in CD8+ T cell lineages, than those from convalescent COVID-19 patients or healthy controls, but slightly disturbed mitochondrial metabolic activity was observed in non-COVID-19 patients. Importantly, plasma IL-6 and C-reactive protein (CRP) levels positively correlated with mitochondrial mass and negatively correlated with fatty acid uptake in T cells from COVID-19 patients. Additionally, compared with those from healthy controls, in vitro-activated T cells from acutely infected COVID-19 patients showed signs of lower glycolysis, a reduced glycolytic capacity, and a decreased glycolytic reserve, accompanied by lower activation of mTOR signaling. Thus, newly identified defects in T cell mitochondrial metabolic functions and metabolic reprogramming upon activation might contribute to immune deficiency in COVID-19.


Assuntos
COVID-19 , Linfócitos T CD8-Positivos , Glicólise , Humanos , Saturação de Oxigênio , SARS-CoV-2
13.
J Immunol ; 207(7): 1848-1856, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34452933

RESUMO

Immune cell responses are strikingly altered in patients with severe coronavirus disease 2019 (COVID-19), but the immunoregulatory process in these individuals is not fully understood. In this study, 23 patients with mild and 22 patients with severe COVID-19 and 6 asymptomatic carriers of COVID-19 were enrolled, along with 44 healthy controls (HC). Peripheral immune cells in HC and patients with COVID-19 were comprehensively profiled using mass cytometry. We found that in patients with severe COVID-19, the number of HLA-DRlow/- monocytes was significantly increased, but that of mucosal-associated invariant T (MAIT) cells was greatly reduced. MAIT cells were highly activated but functionally impaired in response to Escherichia coli and IL-12/IL-18 stimulation in patients with severe COVID-19, especially those with microbial coinfection. Single-cell transcriptome analysis revealed that IFN-stimulated genes were significantly upregulated in peripheral MAIT cells and monocytes from patients with severe COVID-19. IFN-α pretreatment suppressed MAIT cells' response to E. coli by triggering high levels of IL-10 production by HLA-DRlow/--suppressive monocytes. Blocking IFN-α or IL-10 receptors rescued MAIT cell function in patients with severe COVID-19. Moreover, plasma from patients with severe COVID-19 inhibited HLA-DR expression by monocytes through IL-10. These data indicate a unique pattern of immune dysregulation in severe COVID-19, which is characterized by enrichment of suppressive HLA-DRlow/- monocytes associated with functional impairment of MAIT cells through the IFN/IL-10 pathway.


Assuntos
COVID-19/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Interleucina-10/metabolismo , Monócitos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , SARS-CoV-2/fisiologia , Adolescente , Adulto , Doenças Assintomáticas , Células Cultivadas , Criança , Coinfecção , Progressão da Doença , Feminino , Humanos , Tolerância Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
14.
J Sep Sci ; 46(19): e2300435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548124

RESUMO

A reliable method for determination of six α-dicarbonyl compounds in traditional Chinese medicines was first developed and validated by high-performance liquid chromatography-fluorescence detector with pre-column derivatization. α-Dicarbonyl compounds in traditional Chinese medicines were extracted and derivatized with 2,3-diaminaphthalene. The derivatization procedure of six α-dicarbonyl compounds was confirmed by high-resolution mass spectrometry. The limits of quantitation for six α-dicarbonyl compounds ranged from 3.70 × 10-3 to 2.21 × 10-2  µM. The established method showed good linearity (regression coefficient > 0.9990), precision (relative standard deviation < 3.37%), and high recovery (97.8%∼113.1%). The developed method was successfully applied to detect the six α-dicarbonyl compounds in traditional Chinese medicines. The result exhibited six α-dicarbonyl compounds was found in the 15 kinds of traditional Chinese medicines, which suggested us that the determination of α-dicarbonyl compounds should be paid more attention in the quality control of traditional Chinese medicines.


Assuntos
Medicina Tradicional Chinesa , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas
15.
Nucleic Acids Res ; 49(2): 969-985, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33398341

RESUMO

Investigations of CRISPR gene knockout editing profiles have contributed to enhanced precision of editing outcomes. However, for homology-directed repair (HDR) in particular, the editing dynamics and patterns in clinically relevant cells, such as human iPSCs and primary T cells, are poorly understood. Here, we explore the editing dynamics and DNA repair profiles after the delivery of Cas9-guide RNA ribonucleoprotein (RNP) with or without the adeno-associated virus serotype 6 (AAV6) as HDR donors in four cell types. We show that editing profiles have distinct differences among cell lines. We also reveal the kinetics of HDR mediated by the AAV6 donor template. Quantification of T50 (time to reach half of the maximum editing frequency) indicates that short indels (especially +A/T) occur faster than longer (>2 bp) deletions, while the kinetics of HDR falls between NHEJ (non-homologous end-joining) and MMEJ (microhomology-mediated end-joining). As such, AAV6-mediated HDR effectively outcompetes the longer MMEJ-mediated deletions but not NHEJ-mediated indels. Notably, a combination of small molecular compounds M3814 and Trichostatin A (TSA), which potently inhibits predominant NHEJ repairs, leads to a 3-fold increase in HDR efficiency.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , Edição de Genes , Vetores Genéticos/genética , Parvovirinae/genética , Reparo de DNA por Recombinação , Ribonucleoproteínas/metabolismo , Adulto , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Dependovirus , Células HEK293 , Humanos , Ácidos Hidroxâmicos/farmacologia , Mutação INDEL , Células-Tronco Pluripotentes Induzidas , Cinética , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Linfócitos T , Transdução Genética
16.
Perception ; 52(4): 238-254, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36788004

RESUMO

Categorical color constancy has been widely investigated and found to be very robust. As one of object material properties, the surface gloss was found to barely contribute to color constancy in a natural viewing condition. In this study, the effect of surface gloss on categorical color constancy was investigated by asking eight observers to categorize 208 Munsell matte surfaces and 260 Munsell glossy surfaces under D65, F, and TL84 illuminants in a viewing chamber with a uniform gray background. A color constancy index based on the centroid shift of the color category was used to evaluate color constancy degree of each color category across illumination changes from D65 to F or TL84 illuminant. The result showed that both matte and glossy surfaces showed almost perfect color constancy on all color categories under F and TL84 illuminants, and there was no significant difference between them. This result suggests that surface gloss has little effect on categorical color constancy in a uniform gray background where the local surround cue was present, which is consistent with the previous findings.


Assuntos
Percepção de Cores , Iluminação , Humanos , Estimulação Luminosa , Cor
17.
J Environ Manage ; 330: 117128, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584455

RESUMO

Aiming at the problems of large output of excess sludge, difficulty in treatment and disposal, and the potential toxicity of heavy metals restricting its resource utilization, this paper studies the redistribution law of heavy metals in the process of sludge disintegration. The dissertation investigates the distribution law of typical heavy metals such as Cu, Pb, Cd, Zn in the process of microwave and citric acid-microwave cracking sludge under different specific energy and fixed specific energy conditions. The Tessier five-step continuous extraction method was used to extract heavy metals, and the changes in their content and chemical forms were analyzed, which provided certain technical support for the subsequent harmless treatment and resource utilization of excess sludge. The main findings of this paper are as follows: The dissolution rate of heavy metals Cu, Pb, Cd, and Zn increased rapidly during the citric acid-microwave cracking process in the TS specific energy range of 0-45000 kJ/kg, and then gradually tended to be gradual. The maximum dissolution rates of Cu, Pb, Cd, Zn were 8.06%, 16.58%, 14.69%, and 24.11%, respectively. The concentrations of Cu, Pb, Cd, and Zn in the sludge were mainly F4; F3, F4; F2, F3. The proportions of stable states of Cu, Pb, Cd, and Zn in sludge increased to 88.6%, 55.91%, 35.7%, and 31.35%, respectively. When the specific energy was 45000 kJ/kg TS, the concentrations of Pb, Zn, and Cd in the solid phase of the sludge appeared to increase under microwave cracking alone and decrease under the combined action of citric acid and microwave. The concentration of Cu in the solid phase of the sludge increased slightly. The dissolution rates of Pb, Cd, and Zn by microwave alone and citric acid-microwave method were 14.23% and 16.58%, 10.34% and 14.69%, 17.53%, and 24.11%, respectively. The dissolution rates of Cu by both methods were lower. The steady state ratios of Pb and Zn in the citric acid-microwave method increased to 55.91% and 31.25%, respectively; the steady state ratio of Cd in the microwave alone method increased to 39.51%; both methods had no significant effect on the stability of Cu.


Assuntos
Metais Pesados , Esgotos , Esgotos/química , Cádmio , Chumbo , Metais Pesados/química , Ácido Cítrico/química
18.
J Environ Manage ; 348: 119386, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879175

RESUMO

Various activated persulfate (PS) technologies have been investigated and implemented to eliminate antibiotic contaminants from water. The investigation and evaluation of different activation systems are essential for the application of PS techniques. The degradation of amoxicillin (AMX) by heat, light, or heterogeneous catalyst of Fe-AC composite activated PS was investigated, and the kinetics, mechanisms and toxicities were compared in this work. The apparent activation energy of the Fe-AC system was lower than that of the heat system. Hydroxyl and sulfate radicals were demonstrated by electron paramagnetic resonance (EPR) spectroscopy and quenching tests. There were 22, 21 and 13 types of degradation intermediates detected in heat, light and Fe-AC system, respectively. Six pathways of AMX degradation were proposed and compared in the three activated PS systems. The toxicity prediction of degradation intermediates under different treatment processes was estimated by ecological structure-activity relationship model and toxicity estimation software tool. The genotoxicity of the AMX degradation solution was tested by Acinetobacter baylyi ADP1_recA, which indicated that the AMX solution after treatment in the Fe-AC system had almost no genotoxicity. The Fe-AC/PS system shows apparent advantages over the heat or light activated PS system in most cases, demonstrating that the Fe-AC/PS system is suitable for AMX-contaminated remediation in aqueous solution.


Assuntos
Amoxicilina , Poluentes Químicos da Água , Temperatura Alta , Oxirredução , Poluentes Químicos da Água/química , Antibacterianos , Água
19.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241772

RESUMO

Designing a strong tissue adhesive and multifunctional hydrogel dressing for various skin injuries is still a significant challenge. Based on the bioactive activities of rosmarinic acid (RA) and its catechol structure being similar to dopamine, RA-grafted dextran/gelatin hydrogel (ODex-AG-RA) was designed and systemically characterized in this study. The ODex-AG-RA hydrogel exhibited excellent physicochemical properties, including fast gelation time (61.6 ± 2.8 s), strong adhesive strength (27.30 ± 2.02 kPa) and enhanced mechanical properties (1.31 × 104 Pa of G'). The examination of hemolysis and co-culturing with L929 cells showed the strong in vitro biocompatibility of ODex-AG-RA hydrogels. The ODex-AG-RA hydrogels exhibited a 100% mortality rate against S. aureus and at least 89.7% against E. coli in vitro. In vivo evaluation for efficacy in skin wound healing was carried out in a rat model of full-thickness skindefect. The amount of collagen deposition and CD31 on wounds in the two ODex-AG-RA-1 groups on day 14 was 4.3 times and 2.3 times of that in the control group, respectively. Furthermore, the mechanism of ODex-AG-RA-1 for promoting wound healing was proved to be related to its anti-inflammatory properties by adjusting the expression of inflammatory cytokines (TNF-α and CD163) and reducing the level of oxidative stress (MDA and H2O2). Overall, this study demonstrated the wound-healing efficacy of RA-grafted hydrogels for the first time. ODex-AG-RA-1 hydrogel, due to its adhesive, anti-inflammatory, antibacterial and antioxidative activities, was a promising candidate as a wound dressing.


Assuntos
Antioxidantes , Gelatina , Animais , Ratos , Aderências Teciduais , Antioxidantes/farmacologia , Dextranos , Hidrogéis/farmacologia , Escherichia coli , Peróxido de Hidrogênio , Staphylococcus aureus , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bandagens , Ácido Rosmarínico
20.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836691

RESUMO

Coordination polymers (CPs) are a diverse class of multi-dimensional compounds that show promise as photocatalysts for degrading dyes in polluted water. Herein, a new 1D Cd(II)-based coordination polymer with the formula [Cd(bpyp)(nba)2] (1) (bpyp = 2,5-bis(pyrid-4-yl)pyridine and Hnba = 4-nitrobenzoic acid) is synthesized and characterized. In 1, the two carboxyl groups of two different nba- ligands show µ2-η1:η1 and µ1-η1:η1 coordination modes to connect the CdII centers and sit on either side of the chain along the b direction. The produced CP 1 was utilized as the photocatalyst in the process of the photodegradation of methyl blue (MB), methyl orange (MO), rhodamine B (RhB), and methyl violet (MV) dyes when exposed to UV light. The photocatalytic degradation activities of CP 1 were analyzed, and the results suggest that it exhibits an extraordinary efficiency in the degradation of MB, MV, MO, and RhB. RhB has a 95.52% efficiency of degradation, whereas MV has a 58.92% efficiency, MO has 35.44%, and MB has 29.24%. The photodecomposition of dyes is catalyzed mostly by •O2- and •OH-, as shown by research involving the trapping of radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA