Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 228, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429694

RESUMO

BACKGROUND: Late embryogenesis abundant (LEA) proteins play important roles in plant growth and development, as well as stresses responsiveness. Nowadays, it has been found that LEAs also have function in fruit ripening. However, the comprehensive analysis on a genome-wide basis of LEA family remains limited, and the role of LEA in fruit ripening has not been fully explored yet, especially in strawberry, an economic important plant and ideal material for studying fruit ripening. RESULTS: In this study, a total of 266 putative LEA proteins were identified and characterized in strawberry genome. Subcellular localization prediction indicated that they were mostly localized in chloroplast, cytoplasm and nucleus. Duplication events detection revealed that whole genome duplication or segmental was the main driver for the expansion of LEA family in strawberry. The phylogenetic analysis suggested that FaLEAs were classified into eight groups, among which, LEA2 was the largest subgroup with 179 members, followed by LEA3, dehydrin (DHN), LEA4 and SMP (seed maturation protein). The LEA1 and DHN groups were speculated to play dominant roles in strawberry fruit development and ripening, according to their larger proportion of members detected as differentially expressed genes during such process. Notably, the expression of FaLEA167 belonging to LEA1 group was altered by strawberry maturation, and inhibited by overexpression of negative regulators of ripening (a cytosolic/plastid glyceraldehyde-3-phosphate dehydrogenase, FaGAPC2 and a cytosolic pyruvate kinase, FaPKc2.2). Subsequently, overexpression of FaLEA167 significantly increased the percentage of fruit at green stage, while reduced the full red fruit proportion. In consistent, the anthocyanins content and the fruit skin color variable reflecting a range from greenness to redness (a* value) were significantly reduced. Whereas, FaLEA167 overexpression apparently up-regulated citric acid, soluble protein and malondialdehyde content, but had no obvious effects on total soluble solids, sugar, flavonoids, phenolics content and antioxidant capacity. CONCLUSIONS: These findings not only provided basic information of FaLEA family for further functional research, but also revealed the involvement of FaLEA167 in negatively regulating strawberry fruit ripening, giving new insights into understanding of FaLEA functions.


Assuntos
Fragaria , Antocianinas/metabolismo , Frutas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Sci Food Agric ; 101(4): 1554-1561, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32869299

RESUMO

BACKGROUND: Phospholipids, the main lipid component in marine shellfish, mainly comprise glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE). GPC and GPE in marine shellfish, especially scallop, carry n-3 long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), although different types of glycerophospholipids (GP) have different health benefits on human health. Moreover, different GP subclasses such as GPC and GPE have different oxidative susceptibilities in complex food systems. The present study compared the oxidative susceptibilities of GPC and GPE in dried scallop during storage by high-performance liquid chromatography-tandem mass spectrometry and kinetic models, and also investigated the effects of natural phenolic antioxidant on their susceptibilities. RESULTS: The results showed that GPC and GPE molecular species (carrying EPA or DHA) contents in samples continuously reduced during storage at two different temperatures. The first-order kinetic model better reflected the changes of GPC and GPE molecular species (carrying EPA or DHA) in samples than the zero-order kinetic model during storage. According to the oxidation rate (k) obtained from first-order kinetic models, GPE possessed a greater oxidation rate than GPC during storage. Moreover, the results showed that antioxidants of bamboo leaves (AOB, polar polyphenolic antioxidants) significantly decreased the oxidation rates of GPC and GPE molecular species (carrying EPA or DHA) in samples during storage, and GPC could be more effectively protected by AOB compared to GPE. CONCLUSION: The present study provides a practical method for accurately evaluating the oxidative susceptibility of different phospholipid classes in complex food systems. © 2020 Society of Chemical Industry.


Assuntos
Pectinidae/química , Fosfatidiletanolaminas/química , Fosforilcolina/química , Alimentos Marinhos/análise , Animais , Armazenamento de Alimentos , Cinética , Músculo Esquelético/química , Oxirredução
3.
Proc Natl Acad Sci U S A ; 109(28): 11206-10, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733735

RESUMO

Autophagy has been implicated in a number of physiological processes important for human heath and disease. Autophagy involves the formation of a double-membrane cytosolic vesicle, an autophagosome. Central to the formation of the autophagosome is the ubiquitin-like protein autophagy-related (Atg)8 (microtubule-associated protein 1 light chain 3/LC3 in mammalian cells). Following autophagy induction, Atg8 shows the greatest change in expression of any of the proteins required for autophagy. The magnitude of autophagy is, in part, controlled by the amount of Atg8; thus, controlling Atg8 protein levels is one potential mechanism for modulating autophagy activity. We have identified a negative regulator of ATG8 transcription, Ume6, which acts along with a histone deacetylase complex including Sin3 and Rpd3 to regulate Atg8 levels; deletion of any of these components leads to an increase in Atg8 and a concomitant increase in autophagic activity. A similar regulatory mechanism is present in mammalian cells, indicating that this process is highly conserved.


Assuntos
Autofagia , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Família da Proteína 8 Relacionada à Autofagia , Deleção de Genes , Células HeLa , Histona Desacetilases/metabolismo , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Modelos Genéticos , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Transdução de Sinais , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Transcrição Gênica , Vacúolos/metabolismo
4.
Food Chem ; 447: 139029, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513480

RESUMO

Hydrocolloids synthesized by gallic acid (GA) and ferulic acid (FA) grafting onto chitosan (CS) were characterized, and their effects on PhIP formation in pan-fried golden pompano were investigated. Spectrograms including nuclear magnetic resonance, Fourier transform infrared spectroscopy and ultraviolet-visible confirmed that GA and FA were successfully grafted onto CS via covalent bonds, with grafting degree of 97.06 ± 2.56 mg GA/g and 93.56 ± 2.76 mg FA/g, respectively. The CS-g-GA and CS-g-FA exerted better solubility and antioxidant activities than CS. For the 8-min pan-fried golden pompano fillets, CS-g-GA and CS-g-FA (0.5 %, m/v) significantly reduced the PhIP formation by 61.71 % and 81.64 %, respectively. Chemical models revealed that CS-g-GA and CS-g-FA inhibited PhIP formation mainly by decreasing the phenylacetaldehyde contents from Maillard reaction and competing with creatinine to react with phenylacetaldehyde. Therefore, it was suggested that CS-g-phenolic acids emerge as novel coating for aquatic products during processing and inhibit heterocyclic amines generation.


Assuntos
Acetaldeído/análogos & derivados , Quitosana , Imidazóis , Quitosana/química , Polifenóis , Antioxidantes/química , Ácido Gálico/química
5.
Food Chem ; 447: 138981, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518613

RESUMO

In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.


Assuntos
Cocos , Conservação de Alimentos , Animais , Conservação de Alimentos/métodos , Água , Peixes
6.
Int J Biol Macromol ; 277(Pt 2): 134171, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067727

RESUMO

In this study, we designed the noncovalent binding of sodium caseinate (SC) to tannic acid (TA) to stabilize high internal phase emulsions (HIPEs) used as fish oil delivery systems. Hydrogen bonding was the dominant binding force, followed by weak hydrophobic interaction and weak van der Waals forces, as demonstrated by FTIR, fluorescence spectroscopy, and molecular docking experiments, with a binding constant of 3.25 × 106, a binding site of 1.2, and a static quenching of the binding. Increasing SC:TA from SC to 2:1 decreased the particle size from 107.37 ± 10.66 to 76.07 ± 2.77 nm and the zeta potential from -6.99 ± 2.71 to -22 ± 2.42 mV. TA increased the interfacial tension of SC, decreased the surface hydrophobicity from 1.3 × 104 to 1.6 × 103 and improved the oxidation resistance of SC. The particle size of high internal phase emulsions stabilized by complexes with different mass ratios (SC:TA from 1:0 to 2:1) increased from 4.9 ± 0.02 to 12.9 µm, the potential increased from -32.37 ± 2.7 to -35.07 ± 2.58 mV, and the instability index decreased from 0.75 to 0.02. Thicker interfacial layers could be observed by laser confocal microscopy, and an increase in the storage modulus indicated a formation of a stronger gel network. SC:TA of 1:0 showed emulsion breakage after 14 d of storage at room temperature. SC:TA of 2:1 showed the lowest degree of oil-water separation after freeze-thaw treatment. Especially, the most stable high endo-phase emulsion (at SC:TA of 2:1) prepared at each mass ratio was selected for further stability exploration. The emulsion particle size increased only from 15.63 ± 0.06 to 22.27 ± 0.35 µm at salt ion concentrations of 50-200 mM and to 249.33 ± 31.79 µm at 300 mM. The instability index and storage modulus of the high endo-phase emulsions increased gradually with increasing salt ion concentrations. At different heating temperatures (55-85 °C), the instability index of the high internal phase emulsion gradually decreased and the storage modulus gradually increased. Meanwhile, at 50 °C for 15 d of accelerated oxidation, the content of hydroperoxide decreased from 53.32 ± 0.18 to 37.48 ± 0.77 nmol/g, about 29.7 %, and the thiobarbituric acid value decreased from 1.06 × 103 to 0.8 × 103, about 24.5 %, in the high endo-phase emulsions prepared by 2:1 SC:TA compared to the fish oils, and the SC-stabilized high endo-phase only emulsion broke at the sixth day of oxidation. From the above findings, it was concluded that the high internal phase emulsion prepared with SC:TA of 2:1 can be used as a good delivery system for fish oil.


Assuntos
Caseínas , Emulsões , Óleos de Peixe , Taninos , Emulsões/química , Taninos/química , Caseínas/química , Óleos de Peixe/química , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas , Ligação de Hidrogênio , Simulação de Acoplamento Molecular
7.
Food Chem ; 460(Pt 2): 140536, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39089037

RESUMO

This study explored the relationship between the interfacial behavior of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex (LF-EGCG) and the stability of high internal phase Pickering emulsions (HIPPEs). The formation of covalent bond between lactoferrin and polyphenol was verified by the increase in molecular weight. In LF-EGCG group, the surface hydrophobicity, interfacial pressure, and adsorption rate were decreased, while the molecular flexibility, interfacial film viscoelasticity, and interfacial protein content were increased. Meanwhile, LF-EGCG HIPPE possessed reduced droplet size, increased ζ-potential and stability. Rheology showed the viscoelasticity, structural recovery and gel strength of LF-EGCG HIPPE were improved, giving HIPPE inks better 3D printing integrity and clarity. Moreover, the free fatty acids (FFA) release of LF-EGCG HIPPE (62.6%) was higher than that of the oil group (50.1%). Therefore, covalent treatment effectively improved the interfacial properties of protein particles and the stability of HIPPEs. The macroscopic properties of HIPPEs were positively regulated by the interfacial properties of protein particles. The result suggested that the stability of emulsions can be improved by regulating the interfacial properties of particles.

8.
J Ethnopharmacol ; 321: 117487, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030024

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a life-threatening condition with high morbidity and mortality, underscoring the urgent need for novel treatments. Monochasma savatieri Franch. (LRC) is commonly used clinically to treat wind-heat cold, bronchitis, acute pneumonia and acute gastroenteritis. However, its role in the treatment of ALI and its mechanism of action are still unclear. AIM OF THE STUDY: This study aimed to demonstrate the pharmacological effects and underlying mechanisms of LRC extract, and provide important therapeutic strategies and theoretical basis for ALI. MATERIALS AND METHODS: In this study, a research paradigm of integrated pharmacology combining histopathological analysis, network pharmacology, metabolomics, and biochemical assays was used to elucidate the mechanisms underlaying the effects of LRC extract on LPS-induced ALI in BALB/c mice. RESULTS: The research findings demonstrated that LRC extract significantly alleviated pathological damage in lung tissues and inhibited apoptosis in alveolar epithelial cells, and the main active components were luteolin, isoacteoside, and aucubin. Lung tissue metabolomic and immunohistochemical methods confirmed that LRC extract could restore metabolic disorders in ALI mice by correcting energy metabolism imbalance, activating cholinergic anti-inflammatory pathway (CAP), and inhibiting TLR4/NF-κB signaling pathway. CONCLUSIONS: This study showed that LRC extract inhibited the occurrence and development of ALI inflammation by promoting the synthesis of antioxidant metabolites, balancing energy metabolism, activating CAP and suppressing the α7nAChR-TLR4/NF-κB p65 signaling pathway. In addition, our study provided an innovative research model for exploring the effective ingredients and mechanisms of traditional Chinese medicine. To the best of our knowledge, this is the first report describing the protective effects of LRC extract in LPS-induced ALI mice.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Animais , Camundongos , NF-kappa B/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Pulmão/patologia , Pneumonia/patologia
9.
J Ethnopharmacol ; 319(Pt 3): 117250, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37832811

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the theory of traditional Chinese medicine (TCM), diabetic cardiomyopathy (DCM) belongs to the category of "Xiaoke disease" according to the symptoms, and "stasis-heat" is the main pathogenesis of DCM. The Chinese medicine Anemarrhena asphodeloides Bunge (AAB), as a representative of heat-clearing and engendering fluid, is often used clinically in the treatment of DCM. Anemarrhena asphodeloides Bunge total saponins (RATS) are the main bioactive components of AAB, the modern pharmacologic effects of RATS are anti-inflammatory, hypoglycemic, and cardioprotective. However, the potential protective mechanisms of RATS against DCM remain largely undiscovered. AIM OF THE STUDY: The primary goal of this study was to explore the effect of RATS on DCM and its mechanism of action. MATERIALS AND METHODS: Streptozotocin and a high-fat diet were used to induce DCM in rats. UHPLC/Q-TOF-MS was used to determine the chemical components of RATS. The degenerative alterations and apoptotic cells in the heart were assessed by HE staining and TUNEL. Network pharmacology was used to anticipate the probable targets and important pathways of RATS. The alterations in metabolites and main metabolic pathways in heart tissue were discovered using 1 H-NMR metabolomics. Ultimately, immunohistochemistry was used to find critical pathway protein expression. RESULTS: First of all, UHPLC/Q-TOF-MS analysis showed that RATS contained 11 active ingredients. In animal experiments, we found that RATS lowered blood glucose and lipid levels in DCM rats, and alleviated cardiac pathological damage, and decreased cardiomyocyte apoptosis. Furthermore, the study found that RATS effectively reduced inflammatory factor release and the level of oxidative stress. Mechanistically, RATS downregulated the expression levels of PI3K, AKT, HIF-1α, LDHA, and GLUT4 proteins. Additionally, glycolysis was discovered to be a crucial pathway for RATS in the therapy of DCM. CONCLUSIONS: Our findings suggest that the protective effect of RATS on DCM may be attributed to the inhibition of the PI3K/AKT/HIF-1α pathway and the correction of glycolytic metabolism.


Assuntos
Anemarrhena , Diabetes Mellitus , Cardiomiopatias Diabéticas , Saponinas , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Anemarrhena/química , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/química , Glicólise
10.
Plant Physiol Biochem ; 215: 109043, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39181084

RESUMO

'Benihoppe' and 'Fenyu No.1' are representative varieties of red and pink strawberries in China, possess distinct hue and flavor profiles. This study analyzed the underlying biochemical and molecular differences of two varieties utilizing transcriptomics and high-performance liquid chromatography (HPLC). Ripening 'Benihoppe' fruits accumulated more sucrose and pelargonin-3-glucoside (P3G) with a little cyanidin and higher firmness. Whereas ripening 'Fenyu No.1' fruits contained more fructose, glucose, malic acid and ascorbic acid (AsA), but less P3G and citric acid. Moreover, genotype significantly influenced phenolic compounds contents in strawberries. Transcriptome analysis revealed that pectin degradation (PL, PG, PE), sucrose synthesis (CWINV, SUS, TPS) and citric acid metabolism (α-OGDH, ICDH, GAD, GS, GDH, PEPCK, AST) were weakened in 'Benihoppe' fruit. In contrast, the synthesis of sucrose (CWINH, SPS), citric acid (CS, PEPC), anthocyanin (F3H, F3'H, F3'5'H, DFR, UFGT and ANS), and citric acid transport (V-ATPase) was enhanced. In 'Fenyu No.1' fruit, the degradation of sucrose, citric acid, and pectin was enhanced, along with the synthesis of malic acid (ME) and ascorbic acid (PMM, MDHAR and GaLUR). However, anthocyanins synthesis, glucose metabolism (HK, G6PI, PFK, G6PDH, PGK, PGM, ENO, PK), fructose metabolism (FK), citric acid synthesis and transport, and AsA degradation (AO, APX) were relatively weak. RT-qPCR results corroborated the transcriptome data. In conclusion, this study revealed the distinctions and characteristics of strawberries with different fruit colors regarding texture, flavor and color formation processes. These findings offer valuable insights for regulating metabolic pathways and identifying key candidate genes to improve strawberry quality.

11.
Phytomedicine ; 130: 155345, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810555

RESUMO

BACKGROUND: Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE: The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS: In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION: These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Metabolômica , Metilaminas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Transdução de Sinais , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Sepse/tratamento farmacológico , Metilaminas/metabolismo , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Farmacologia em Rede
12.
J Hypertens ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146540

RESUMO

OBJECTIVE: Abdominal aortic aneurysm (AAA) is an aneurysm-like dilated and highly fatal cardiovascular disease. CD8+ T cells have been shown to be critical for vascular pathological processes, but the contribution of these lymphocytes to vascular diseases remains elusive. METHODS AND RESULTS: Eight-week-old male wildtype (CD8+/+) and Cd8a knockout (CD8-/-) mice were used in a calcium chloride2 (CaCl2)-induced experimental AAA model. At 6 weeks after surgery, CD8+ T-cell deletion prevented the formation of AAA, accompanied by reductions of the levels of inflammatory (interferon-γ [IFN-γ], interleukin-1ß, monocyte chemoattractant protein-1, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, NOD-like receptor protein 3, caspase-1), oxidative stress [NADPH oxidase and gp91phox], and proteolysis (cathepsin S, cathepsin K, matrix metalloproteinase-2 [MMP-2] and MMP-9) proteins and/or genes in plasma and/or AAA tissues. Immunoreactivities of MMP-2 and MMP-9 were observed in macrophages. An injection of IFN-γ and adoptive transfer of CD8+ T cells of IFN-γ+/+ mice diminished CD8-/--mediated vasculoprotective actions in the AAA mice. In vitro, IFN-γ enhanced MMP-2 and MMP-9 gelatinolytic activities in macrophage and/or vascular smooth muscle cells. CONCLUSION: The vasculoprotective effects of CD8+ T-cell deletion in a mouse CaCl2-induced AAA model were likely attributable to, at least in part, the attenuation of IFN-γ-dependent inflammation action, oxidative stress production, and proteolysis, suggesting a novel therapeutic target for AAA formation by regulating CD8+ T-cell-derived IFN-γ secretion.

13.
Plants (Basel) ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999678

RESUMO

Fruit softening is a prominent attribute governing both longevity on shelves and commercial worth. Polygalacturonase (PG) plays a major role in strawberry fruit softening. However, the PG gene family in strawberry has not been comprehensively analyzed. In this study, 75 FaPG genes were identified in the octoploid strawberry genome, which were classified into three groups according to phylogenetic analysis. Subcellular localization prediction indicated that FaPGs are mostly localized to the plasma membrane, cytoplasm, and chloroplasts. Moreover, the expression of FaPGs during strawberry development and ripening of 'Benihoppe' and its softer mutant was estimated. The results showed that among all 75 FaPGs, most genes exhibited low expression across developmental stages, while two group c members (FxaC_21g15770 and FxaC_20g05360) and one group b member, FxaC_19g05040, displayed relatively higher and gradual increases in their expression trends during strawberry ripening and softening. FxaC_21g15770 was selected for subsequent silencing to validate its role in strawberry softening due to the fact that it exhibited the highest and most changed expression level across different developmental stages in 'Benihoppe' and its mutant. Silencing FxaC_21g15770 could significantly improve strawberry fruit firmness without affecting fruit color, soluble solids, cellulose, and hemicellulose. Conversely, silencing FxaC_21g15770 could significantly suppress the expression of other genes related to pectin degradation such as FaPG-like, FaPL, FaPME, FaCX, FaCel, FaGlu, FaXET, and FaEG. These findings provide basic information on the FaPG gene family for further functional research and indicate that FxaC_21g15770 plays a vital role in strawberry fruit softening.

14.
Int J Biol Macromol ; 253(Pt 8): 127683, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37890311

RESUMO

Chitosan (Ch)-based edible composite films were prepared by incorporating blending wampee seed essential oil (WSEO) into a Ch matrix, using the incorporation ratio as a variable. The physical, mechanical properties, structure morphology and rheological properties were determined using tensile strength (TS), elongation at break (EB), water vapor permeability (WVP) tests together with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) observations and apparent viscosity and shear rate. In addition, the antimicrobial, antioxidant activities were investigated by the DPPH & ABTS radicals scavenging and inhibition zone assays, respectively. Compared with Ch, the incorporation of WSEO significantly decreased (P < 0.05) the TS, EB, and WVP values, especially when the WSEO ratio reached 1.0 % or higher. Meanwhile, the films exhibited greatly improved visible light barrier performance after WSEO incorporation. Both FTIR spectroscopy and SEM observations reflected the crosslinking between WSEO and Ch. Meanwhile, the composite films demonstrated smaller particle size and weaker rheological viscosities, which enhanced the antimicrobial and antioxidant capabilities when compared with those of Ch. Therefore, this study suggested that WSEO incorporated with Ch is an effective ingredient for the preparation of edible films with enhanced physicochemical and biological properties.


Assuntos
Anti-Infecciosos , Quitosana , Clausena , Filmes Comestíveis , Óleos Voláteis , Antioxidantes/farmacologia , Antioxidantes/química , Óleos Voláteis/farmacologia , Quitosana/química , Anti-Infecciosos/farmacologia , Permeabilidade , Embalagem de Alimentos
15.
Sci Total Environ ; 864: 161057, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565864

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are extremely toxic environmental pollutants, which are harmful to the human body. Direct collection and analysis of airborne PAHs is essential for air quality monitoring. Herein, we demonstrated an integrated system for airborne PAHs enrichment and detection. The enrichment cube was composed of channels with threaded structures and curved channels, which had high capture efficiency. Then PAHs-carried particles could be crushed into the detection chip for testing. The whole process took about 25 min (5 min for PAHs enrichment and 20 min for PAHs test). The limit of detection was 3.3 ng/m3, which could meet the needs of daily analysis. It had the advantages of low cost, low reagent consumption, simple operation, semi-automatic operation, high sensitivity, high speed and high throughput compared with conventional techniques, showing the potential for becoming an air pollution monitoring platform.

16.
Int J Biol Macromol ; 224: 1266-1275, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306912

RESUMO

The effect of chitosan-wampee seed essential oil (WSEO) composite film coating before cold plasma (CP) treatment on the quality preservation of golden pompano fillets during refrigerated storage was investigated and compared with that of chitosan and CP alone. The results indicated that the chitosan-WSEO composite film coating before CP treatment and modified atmosphere packaging (MAP), referred to as CPCW-M, exhibited the lowest total bacterial count, total volatile base nitrogen, and peroxide and thiobarbituric acid values of 4.03 log culture-forming units (CFU)/g, 13.45 mg/100 g, 24.65 meq/kg, and 1428.4 µg MDAeq/kg, respectively. Simultaneously, it contributed to the most profound inhibition of the lipid hydrolase, lipoxygenase, thus effectively preventing the oxidative deterioration of unsaturated fatty acids. Moreover, minimal color changes, drip loss, and texture deterioration of the fillets were observed. Therefore, the edible chitosan-WSEO composite film, together with CP and MAP, was effective in preserving golden pompano fillets and extending shelf life throughout the refrigerated storage period.


Assuntos
Quitosana , Óleos Voláteis , Gases em Plasma , Animais , Conservação de Alimentos/métodos , Quitosana/farmacologia , Embalagem de Alimentos/métodos , Peixes , Armazenamento de Alimentos
17.
Plants (Basel) ; 12(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687395

RESUMO

Blackleg disease is devastating for wasabi (Eutrema japonicum) production, occurring at any time and everywhere within the main production area of the Sichuan Province, China. There have been very few studies on the chemical control of this disease. In this study, we isolated and identified a local popular strain of the pathogen Plenodomus wasabiae. The isolated fungus strain caused typical disease spots on the leaves and rhizomes upon inoculation back to wasabi seedlings. The symptoms of blackleg disease developed very quickly, becaming visible on the second day after exposure to P. wasabiae and leading to death within one week. We then evaluated the efficacy of ten widely used fungicides to screen out effective fungicides. The efficacy of the tested fungicides was determined through mycelial growth inhibition on medium plates. As a result, tebuconazole and pyraclostrobin were able to inhibit the mycelial growth of P. wasabiae, and the most widely used dimethomorph in local production areas produced the lowest inhibition activity (13.8%). Nevertheless, the highest control efficacy of tebuconazole and pyraclostrobin on wasabi seedlings was only 47.48% and 39.03%, respectively. Generally, the control efficacy of spraying the fungicide before inoculation was better than that after inoculation. An increase in the application concentration of the two fungicides did not proportionately result in improved performance. We cloned the full-length sequence of sterol 14-demethylase (CYP51) and cytochrome B (CYTB) of which the mutations may contribute to the possible antifungalresistance. These two genes of the isolated fungus do not possess any reported mutations that lead to fungicide resistance. Previous studies indicate that there is a significant difference between fungicides in terms of the effectiveness of controlling blackleg disease; however, the control efficacy of fungicides is limited in blackleg control. Therefore, field management to prevent wound infection and unfavorable environmental conditions are more important than pesticide management.

18.
Carbohydr Polym ; 303: 120441, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657836

RESUMO

Considering that natural polysaccharides are potential anti-inflammatory agents, in this study, an arabinan (RGP70-2) was isolated and purified from Rehmannia glutinosa Libosch. (R. glutinosa) and its structure was characterized. RGP70-2 was a homogeneous polysaccharide with a molecular weight of 6.7 kDa, with the main backbone comprising →5)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →2,3,5)-α-L-Araf-(1→, and →2,5)-α-L-Araf-(1 â†’ linkages and the side chain comprising an α-L-Araf-(1 â†’ linkage. In vivo experiments showed that RGP70-2 inhibited ROS production and downregulated the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). In vitro experiments showed that RGP70-2 decreased levels of pro-inflammatory cytokines, inhibited ROS production, and attenuated NF-κB-p65 translocation from the cytoplasm to the nucleus. Our results showed that RGP70-2 may delay inflammation by regulating the ROS-NF-κB pathway. Thus, RGP70-2 has potential applications as an anti-inflammatory agent in the biopharmaceutical industry.


Assuntos
NF-kappa B , Rehmannia , NF-kappa B/metabolismo , Rehmannia/química , Espécies Reativas de Oxigênio/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas
19.
J Ethnopharmacol ; 307: 116229, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36773789

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and thus imposes heavy economic burden on patients, their families, and society. Furthermore, COPD seriously affects the quality of life of patients. The concept of "overall regulation" of traditional Chinese medicine (TCM) plays an important role in the prevention and treatment of COPD. AIM OF THE STUDY: The objective of this review is to summarize the TCM theories, experimental methods, TCM extracts, active TCM ingredients, and TCM formulas for the treatment of COPD and reveal the effects and mechanisms of TCM treatments on COPD. MATERIALS AND METHODS: This article reviewed literature on TCM-based treatments for COPD reported from 2016 to 2021. Relevant scientific studies were obtained from databases that included PubMed, China National Knowledge Infrastructure, Web of Science, Google Scholar, The Plant List, ScienceDirect, and SciFinder. RESULTS: This review summarized TCM-based theory, experimental methods, active ingredients, and potential toxicities, the effects of TCM extracts and formulations, and their mechanisms for the treatment of COPD. Most investigators have used in vivo models of cigarette smoke combined with lipopolysaccharide induction in rats and in vitro models of cigarette smoke extract induction. The active ingredients of TCM used for the treatment of COPD in relevant studies were triterpenoids, flavonoids, phenolics, quinones, glycosides, and alkaloids. TCMs commonly used in the treatment of COPD include antipyretic drugs, tonic medicines, anticough medications, and asthma medications. TCM can treat COPD by suppressing inflammation, reducing oxidative stress, inhibiting apoptosis, and improving airway remodeling. CONCLUSIONS: This review enriches the theory of COPD treatments based on TCM, established the clinical significance and development prospects of TCM-based COPD treatments, and provided the necessary theoretical support for the further development of TCM resources for the treatment of COPD.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Medicina Tradicional Chinesa , Qualidade de Vida , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fitoterapia , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia
20.
Int J Biol Macromol ; 253(Pt 8): 127647, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884235

RESUMO

Aging is a degenerative progress, accompanied by oxidative damage, metabolic disorders and intestinal flora imbalance. Natural macromolecular polysaccharides have shown excellent anti-aging and antioxidant properties, while maintaining metabolic and intestinal homeostasis. The molecular weight, monosaccharide composition, infrared spectrum and other chemical structure information of four Rehmannia glutinosa polysaccharides (RG50, RG70, RG90, RGB) were determined, and their free radical scavenging ability was assessed. Molecular weight and monosaccharide composition analysis exhibited that RG50 (2-72 kDa), RG70 (3.2-37 kDa), RG70 (3-42 kDa), and RGB (3.1-180 kDa) were heteropolysaccharide with significant different monosaccharide species and molar ratios. We found that RG70 had the best antioxidant activity in vitro and RG70 could enhance the antioxidant enzyme system of Caenorhabditis elegans, diminished lipofuscin and reactive oxygen species levels, up-regulate the expression of daf-16, skn-1 and their downstream genes, and down-regulate the expression of age-1. Metabolomics results showed that RG70 mainly influenced glycine, serine and threonine metabolism and citric acid cycle. 16S rRNA sequencing showed that RG70 significantly up-regulated the abundance of Lachnospiraceae_NK4B4_group, which were positively correlated with amino acid metabolism and energy cycling. These results suggest that RG70 may delay aging by enhancing antioxidant effects, affecting probiotics and regulating key metabolic pathways.


Assuntos
Microbioma Gastrointestinal , Rehmannia , Animais , Caenorhabditis elegans , Antioxidantes/farmacologia , Antioxidantes/química , Rehmannia/química , RNA Ribossômico 16S , Polissacarídeos/farmacologia , Polissacarídeos/química , Envelhecimento , Monossacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA