Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 675: 712-720, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38996701

RESUMO

Rationally designing metal organic frameworks (MOFs) as an ideal dual-function material for water electrolysis and supercapacitors is of great significance for energy storage and conversion. Herein, we successfully synthesized the nanoneedle-like structure CoNi-MOF by partially replacing 2, 5-thiophenedicarboxylic acid (TDA) with 1, 1'-Ferrocenedicarboxylate (Fc). The exchange of Fc ligand can modulate the morphology and electronic structure of CoNi-TDA, thus exposing the abundant active sites and improving the electrical conductivity. The as-prepared CoNi-TDA/0.2Fc exhibited a low overpotential of 236 mV at 10 mA cm-2 for oxygen evolution reaction (OER) and a low Tafel slope of 40.44 mV dec-1. Additionally, CoNi-TDA/0.2Fc demonstrated a notable specific capacitance of 1409 F g-1 at 1 A/g and excellent stability, maintaining a capacitance retention of 96.54 % after 20,000 cycles. The study proposes a new strategy to modulate the morphology and electronic structure of MOFs via the ligand exchange for high-performance energy storage and conversion device.

2.
J Colloid Interface Sci ; 663: 725-734, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432171

RESUMO

Efficientandinexpensiveoxygenevolutionreaction(OER)catalysts are essential for the electrochemical splitting of water into hydrogen fuel. Herein, we have successfully synthesized NiCoFe(OH)x nanosheets on Ni-Fe foam (NFF) by exploiting the Fenton-like effect of Co2+ and S2O82- to corrode the NFF foam. The as-prepared NiCoFe(OH)x/NFF exhibits the porous structure with the interconnected nanosheets that are firmly bonded to the conductive substrate of NFF, thereby enhancing ions and charge transfer kinetics. The unique structure and composition of NiCoFe(OH)x/NFF result in the low overpotentials of 200 and 262 mV at current densities of 10 and 100 mA cm-2, respectively, as well as a low Tafel slope of 53.25 mV dec-1. In addition, NiCoFe(OH)x/NFF displays low overpotentials of 267 and 294 mV at a high current density of 100 mA cm-2 in simulated and real seawater, respectively. Furthermore, the assembled NiCoFe(OH)x//Pt/C water electrolysis cell has achieved a current density of 10 mA cm-2 at a low voltage of 1.49 V, and displayed the good stability with slight attenuation for 110 h. The high OER performance of NiCoFe(OH)x is attributed to the co-catalytic effect of the three metal ions and the interconnected porous nanosheet structure.

3.
J Colloid Interface Sci ; 665: 345-354, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531279

RESUMO

The oxygen evolution reaction (OER) is a complex four-electron transfer process that poses a significant challenge to the efficient production of hydrogen through water splitting. However, developing non-noble metal electrocatalyst with excellent OER performance is still a big challenge. Herein, we propose a new strategy for the in-situ growth of two-dimensional amorphous/crystalline thiophene-based Ni-Fe metal-organic frameworks (MOFs) using Ni-Fe foam (NFF) as metal source and current collector, and thiophene-2,5-dicarboxylic acid (TDC) as corrosion agent and ligand. TDC was ionized at high temperature to produce H+ ions that etch NFF to release Ni2+ and Fe2+ ions, which were coordinated with TDC to in situ synthesize two-dimensional Ni-Fe thiophenedicarboxylate coordination polymer (NiFe-TDC) nanobelts on NFF. The unique structure and synergistic effect of Ni and Fe ions of NiFe-TDC0.05 result in the excellent OER performance with an overpotential of 224 and 256 mV at current densities of 10 and 100 mA cm-2, respectively, and it can run stably for 100 h at a current density of 100 mA cm-2, indicating the outstanding stability. Furthermore, NiFe-TDC0.05 remains the excellent OER performance with an extremely low potential of 196 and 271 mV at current densities of 10 and 100 mA cm-2 in seawater with 1 mol L-1 (M) KOH, respectively. The assembled NiFe-TDC0.05 || Pt/C water electrolysis cell achieves a current density of 100 mA cm-2 at a low voltage of 1.78 V. The work provides a new method to prepare two dimensional MOFs for efficient water oxidation.

4.
J Inorg Biochem ; 259: 112665, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018746

RESUMO

In an effort to develop the biomimetic chemistry of [FeFe]­hydrogenases for catalytic hydrogen evolution reaction (HER) in aqueous environment, we herein report the integrations of diiron dithiolate complexes into carbon nanotubes (CNTs) through three different strategies and compare the electrochemical HER performances of the as-resulted 2Fe2S/CNT hybrids in neutral aqueous medium. That is, three new diiron dithiolate complexes [{(µ-SCH2)2N(C6H4CH2C(O)R)}Fe2(CO)6] (R = N-oxylphthalimide (1), NHCH2pyrene (2), and NHCH2Ph (3)) were prepared and could be further grafted covalently to CNTs via an amide bond (this 2Fe2S/CNT hybrid is labeled as H1) as well as immobilized noncovalently to CNTs via π-π stacking interaction (H2) or via simple physisorption (H3). Meanwhile, the molecular structures of 1-3 are determined by elemental analysis and spectroscopic as well as crystallographic techniques, whereas the structures and morphologies of H1-H3 are characterized by various spectroscopies and scanning electronic microscopy. Further, the electrocatalytic HER activity trend of H1 > H2 ≈ H3 is observed in 0.1 M phosphate buffer solution (pH = 7) through different electrochemical measurements, whereas the degradation processes of H1-H3 lead to their electrocatalytic deactivation in the long-term electrolysis as proposed by post operando analysis. Thus, this work is significant to extend the potential application of carbon electrode materials engineered with diiron molecular complexes as heterogeneous HER electrocatalysts for water splitting to hydrogen.


Assuntos
Hidrogênio , Hidrogenase , Proteínas Ferro-Enxofre , Nanotubos de Carbono , Nanotubos de Carbono/química , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogênio/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Catálise , Água/química , Complexos de Coordenação/química
5.
ACS Omega ; 9(18): 20196-20205, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737071

RESUMO

Shale reservoirs have diverse mineral types, and analyzing the sensitivity of the mineral composition to shale pores is of great scientific and engineering significance. In this paper, first, X-ray diffraction (XRD) experiments on shale mineral compositions are carried out, and the characteristics of pore structure changes after shale mineral compositions interacted with external fluids (slick water and backflow fluid) are elucidated. Then, the effects of quartz, kaolinite, and pyrite on the pore structure and permeability of shale on the susceptibility to slick water are studied. The results show that (a) quartz and clay minerals are the dominant constituents of each core, with some cores containing minor amounts of plagioclase feldspar and rhodochrosite. (b) The composition of the shale changed significantly following the action of external fluids. The average quartz content of pure shale decreased from 31.62% to 29.1%. The average content of quartz in siliceous shale decreased from 36.53% to 33.5%. The average content of quartz in carbonaceous shale decreased from 9.15% to 8.05%. (c) Factors affecting the sensitivity of shale pore structure and permeability to slick water are mainly quartz, kaolinite, and pyrite. The contents of quartz, kaolinite, and pyrite decreased by an average of 5.1%, 4.6%, and 0.9%, respectively, after slick water action.

6.
Cell Rep ; 43(5): 114174, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38700982

RESUMO

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.


Assuntos
Neoplasias da Mama , Cromatina , Histona-Lisina N-Metiltransferase , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Metilação/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Receptores de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA