Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(31): e2405744121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047039

RESUMO

Multistable structures have widespread applications in the design of deployable aerospace systems, mechanical metamaterials, flexible electronics, and multimodal soft robotics due to their capability of shape reconfiguration between multiple stable states. Recently, the snap-folding of rings, often in the form of circles or polygons, has shown the capability of inducing diverse stable configurations. The natural curvature of the rod segment (curvature in its stress-free state) plays an important role in the elastic stability of these rings, determining the number and form of their stable configurations during folding. Here, we develop a general theoretical framework for the elastic stability analysis of segmented rings (e.g., polygons) based on an energy variational approach. Combining this framework with finite element simulations, we map out all planar stable configurations of various segmented rings and determine the natural curvature ranges of their multistable states. The theoretical and numerical results are validated through experiments, which demonstrate that a segmented ring with a rectangular cross-section can show up to six distinct planar stable states. The results also reveal that, by rationally designing the segment number and natural curvature of the segmented ring, its one- or multiloop configuration can store more strain energy than a circular ring of the same total length. We envision that the proposed strategy for achieving multistability in the current work will aid in the design of multifunctional, reconfigurable, and deployable structures.

2.
Nature ; 558(7709): 274-279, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899476

RESUMO

Soft materials capable of transforming between three-dimensional (3D) shapes in response to stimuli such as light, heat, solvent, electric and magnetic fields have applications in diverse areas such as flexible electronics1,2, soft robotics3,4 and biomedicine5-7. In particular, magnetic fields offer a safe and effective manipulation method for biomedical applications, which typically require remote actuation in enclosed and confined spaces8-10. With advances in magnetic field control 11 , magnetically responsive soft materials have also evolved from embedding discrete magnets 12 or incorporating magnetic particles 13 into soft compounds to generating nonuniform magnetization profiles in polymeric sheets14,15. Here we report 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation. Our approach is based on direct ink writing 16 of an elastomer composite containing ferromagnetic microparticles. By applying a magnetic field to the dispensing nozzle while printing 17 , we reorient particles along the applied field to impart patterned magnetic polarity to printed filaments. This method allows us to program ferromagnetic domains in complex 3D-printed soft materials, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson's ratios. The actuation speed and power density of our printed soft materials with programmed ferromagnetic domains are orders of magnitude greater than existing 3D-printed active materials. We further demonstrate diverse functions derived from complex shape changes, including reconfigurable soft electronics, a mechanical metamaterial that can jump and a soft robot that crawls, rolls, catches fast-moving objects and transports a pharmaceutical dose.

3.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34462360

RESUMO

Inspired by the embodied intelligence observed in octopus arms, we introduce magnetically controlled origami robotic arms based on Kresling patterns for multimodal deformations, including stretching, folding, omnidirectional bending, and twisting. The highly integrated motion of the robotic arms is attributed to inherent features of the reconfigurable Kresling unit, whose controllable bistable deploying/folding and omnidirectional bending are achieved through precise magnetic actuation. We investigate single- and multiple-unit robotic systems, the latter exhibiting higher biomimetic resemblance to octopus' arms. We start from the single Kresling unit to delineate the working mechanism of the magnetic actuation for deploying/folding and bending. The two-unit Kresling assembly demonstrates the basic integrated motion that combines omnidirectional bending with deploying. The four-unit Kresling assembly constitutes a robotic arm with a larger omnidirectional bending angle and stretchability. With the foundation of the basic integrated motion, scalability of Kresling assemblies is demonstrated through distributed magnetic actuation of double-digit number of units, which enables robotic arms with sophisticated motions, such as continuous stretching and contracting, reconfigurable bending, and multiaxis twisting. Such complex motions allow for functions mimicking octopus arms that grasp and manipulate objects. The Kresling robotic arm with noncontact actuation provides a distinctive mechanism for applications that require synergistic robotic motions for navigation, sensing, and interaction with objects in environments with limited or constrained access. Based on small-scale Kresling robotic arms, miniaturized medical devices, such as tubes and catheters, can be developed in conjunction with endoscopy, intubation, and catheterization procedures using functionalities of object manipulation and motion under remote control.


Assuntos
Robótica/instrumentação , Biomimética , Desenho de Equipamento
4.
Proc Natl Acad Sci U S A ; 117(39): 24096-24101, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929033

RESUMO

Deployability, multifunctionality, and tunability are features that can be explored in the design space of origami engineering solutions. These features arise from the shape-changing capabilities of origami assemblies, which require effective actuation for full functionality. Current actuation strategies rely on either slow or tethered or bulky actuators (or a combination). To broaden applications of origami designs, we introduce an origami system with magnetic control. We couple the geometrical and mechanical properties of the bistable Kresling pattern with a magnetically responsive material to achieve untethered and local/distributed actuation with controllable speed, which can be as fast as a tenth of a second with instantaneous shape locking. We show how this strategy facilitates multimodal actuation of the multicell assemblies, in which any unit cell can be independently folded and deployed, allowing for on-the-fly programmability. In addition, we demonstrate how the Kresling assembly can serve as a basis for tunable physical properties and for digital computing. The magnetic origami systems are applicable to origami-inspired robots, morphing structures and devices, metamaterials, and multifunctional devices with multiphysics responses.

5.
Proc Natl Acad Sci U S A ; 115(29): 7503-7508, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967135

RESUMO

The surfaces of many hollow or tubular tissues/organs in our respiratory, gastrointestinal, and urogenital tracts are covered by mucosa with folded patterns. The patterns are induced by mechanical instability of the mucosa under compression due to constrained growth. Recapitulating this folding process in vitro will facilitate the understanding and engineering of mucosa in various tissues/organs. However, scant attention has been paid to address the challenge of reproducing mucosal folding. Here we mimic the mucosal folding process using a cell-laden hydrogel film attached to a prestretched tough-hydrogel substrate. The cell-laden hydrogel constitutes a human epithelial cell lining on stromal component to recapitulate the physiological feature of a mucosa. Relaxation of the prestretched tough-hydrogel substrate applies compressive strains on the cell-laden hydrogel film, which undergoes mechanical instability and evolves into morphological patterns. We predict the conditions for mucosal folding as well as the morphology of and strain in the folded artificial mucosa using a combination of theory and simulation. The work not only provides a simple method to fold artificial mucosa but also demonstrates a paradigm in tissue engineering via harnessing mechanical instabilities guided by quantitative mechanics models.


Assuntos
Células Epiteliais/metabolismo , Hidrogéis/química , Modelos Biológicos , Engenharia Tecidual , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos , Mucosa/citologia , Mucosa/metabolismo
6.
BMC Infect Dis ; 20(1): 633, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847534

RESUMO

BACKGROUND: Cases of refractory Mycoplasma pneumoniae pneumonia have been increasing recently; however, whether viral coinfection or macrolide-resistant M. infection contribute to the development of refractory M. pneumoniae pneumonia remains unclear. This study aimed to investigate the impacts of viral coinfection and macrolide-resistant M. pneumoniae infection on M. pneumoniae pneumonia in hospitalized children and build a model to predict a severe disease course. METHODS: Nasopharyngeal swabs or sputum specimens were collected from patients with community-acquired pneumonia meeting our protocol who were admitted to Shanghai Children's Medical Center from December 1, 2016, to May 31, 2019. The specimens were tested with the FilmArray Respiratory Panel, a multiplex polymerase chain reaction assay that detects 16 viruses, Bordetella pertussis, M. pneumoniae, and Chlamydophila pneumoniae. Univariate and multivariate logistic regression models were used to identify the risk factors for adenovirus coinfection and macrolide-resistant mycoplasma infection. RESULTS: Among the 107 M. pneumoniae pneumonia patients, the coinfection rate was 56.07%, and 60 (60/107, 56.07%) patients were infected by drug-resistant M. pneumoniae. Adenovirus was the most prevalent coinfecting organism, accounting for 22.43% (24/107). The classification tree confirmed that viral coinfection was more common in patients younger than 3 years old. Adenovirus coinfection and drug-resistant M. pneumoniae infection occurred more commonly in patients with refractory M. pneumoniae pneumonia (P = 0.019; P = 0.001). A prediction model including wheezing, lung consolidation and extrapulmonary complications was used to predict adenovirus coinfection. The area under the receiver operating characteristic curve of the prediction model was 0.795 (95% CI 0.679-0.893, P < 0.001). A prolonged fever duration after the application of macrolides for 48 h was found more commonly in patients infected by drug-resistant M. pneumoniae (P = 0.002). A fever duration longer than 7 days was an independent risk factor for drug-resistant Mycoplasma infection (OR = 3.500, 95% CI = 1.310-9.353, P = 0.012). CONCLUSIONS: The occurrence of refractory M. pneumoniae pneumonia is associated with adenovirus coinfection and infection by drug-resistant M. pneumoniae. A prediction model combining wheezing, extrapulmonary complications and lung consolidation can be used to predict adenovirus coinfection in children with M. pneumoniae pneumonia. A prolonged fever duration indicates drug-resistant M. pneumoniae infection, and a reasonable change in antibiotics is necessary.


Assuntos
Infecções por Adenoviridae/epidemiologia , Adenoviridae/genética , Antibacterianos/uso terapêutico , Coinfecção/epidemiologia , Farmacorresistência Bacteriana , Macrolídeos/uso terapêutico , Mycoplasma pneumoniae/genética , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/epidemiologia , Infecções por Adenoviridae/virologia , Adolescente , Criança , Pré-Escolar , China/epidemiologia , Coinfecção/virologia , Infecções Comunitárias Adquiridas/tratamento farmacológico , Feminino , Hospitalização , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex , Mycoplasma pneumoniae/efeitos dos fármacos , Pneumonia por Mycoplasma/virologia , Prevalência , Prognóstico , Resultado do Tratamento
7.
Soft Matter ; 14(13): 2515-2525, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537019

RESUMO

Structures of thin films bonded on substrates have been used in technologies as diverse as flexible electronics, soft robotics, bio-inspired adhesives, thermal-barrier coatings, medical bandages, wearable devices and living devices. The current paradigm for maintaining adhesion of films on substrates is to make the films thinner, and more compliant and adhesive, but these requirements can compromise the function or fabrication of film-substrate structures. For example, there are limits on how thin, compliant and adhesive epidermal electronic devices can be fabricated and still function reliably. Here we report a new paradigm that enhances adhesion of films on substrates via designing rational kirigami cuts in the films without changing the thickness, rigidity or adhesiveness of the films. We find that the effective enhancement of adhesion by kirigami is due to (i) the shear-lag effect of the film segments; (ii) partial debonding at the film segments' edges; and (iii) compatibility of kirigami films with inhomogeneous deformation of substrates. While kirigami has been widely used to program thin sheets with desirable shapes and mechanical properties, fabricate electronics with enhanced stretchability and design the assembly of three-dimensional microstructures, this paper gives the first systematic study on kirigami enhancing film adhesion. We further demonstrate novel applications including a kirigami bandage, a kirigami heat pad and printed kirigami electronics.

8.
Adv Mater ; 36(9): e2302066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37120795

RESUMO

In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.

9.
Soft Robot ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683643

RESUMO

Abstract Active control of the shape of soft robots is challenging. Despite having an infinite number of passive degrees of freedom (DOFs), soft robots typically only have a few actively controllable DOFs, limited by the number of degrees of actuation (DOAs). The complexity of actuators restricts the number of DOAs that can be incorporated into soft robots. Active shape control is further complicated by the buckling of soft robots under compressive forces; this is particularly challenging for compliant continuum robots due to their long aspect ratios. In this study, we show how variable stiffness enables shape control of soft robots by addressing these challenges. Dynamically changing the stiffness of sections along a compliant continuum robot selectively "activates" discrete joints. By changing which joints are activated, the output of a single actuator can be reconfigured to actively control many different joints, thus decoupling the number of controllable DOFs from the number of DOAs. We demonstrate embedded positive pressure layer jamming as a simple method for stiffness change in inflated beam robots, its compatibility with growing robots, and its use as an "activating" technology. We experimentally characterize the stiffness change in a growing inflated beam robot and present finite element models that serve as guides for robot design and fabrication. We fabricate a multisegment everting inflated beam robot and demonstrate how stiffness change is compatible with growth through tip eversion, enables an increase in workspace, and achieves new actuation patterns not possible without stiffening.

10.
Nat Commun ; 15(1): 5509, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951533

RESUMO

Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material distribution to achieve desired 3D shape changes is significantly challenging yet greatly needed. Here, we present an approach that combines machine learning (ML) with both gradient-descent (GD) and evolutionary algorithm (EA) to design AC plates with 3D shape changes. A residual network ML model is developed for the forward shape prediction. A global-subdomain design strategy with ML-GD and ML-EA is then used for the inverse material-distribution design. For a variety of numerically generated target shapes, both ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA with a normal distance-based loss function, optimized designs are achieved for multiple irregular target shapes. Our approach thus provides a highly efficient tool for the design of 4D-printed active composites.

11.
Adv Mater ; : e2312263, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439193

RESUMO

4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.

12.
World J Pediatr ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367140

RESUMO

BACKGROUND: Diarrhea is a common complication of hematopoietic stem cell transplantation (HSCT) and is associated with substantial morbidity, but its etiology is often unknown. Etiologies of diarrhea in this population include infectious causes, chemotherapy- or medication-induced mucosal injury and graft-versus-host disease (GVHD). Distinguishing these potential causes of diarrhea is challenging since diarrheal symptoms are often multifactorial, and the etiologies often overlap in transplant patients. The objectives of this study were to evaluate whether the FilmArray gastrointestinal (GI) panel would increase diagnostic yield and the degree to which pre-transplantation colonization predicts post-transplantation infection. METHODS: From November 2019 to February 2021, a total of 158 patients undergoing HSCT were prospectively included in the study. Stool specimens were obtained from all HSCT recipients prior to conditioning therapy, 28 ± 7 days after transplantation and at any new episode of diarrhea. All stool samples were tested by the FilmArray GI panel and other clinical microbiological assays. RESULTS: The primary cause of post-transplantation diarrhea was infection (57/84, 67.86%), followed by medication (38/84, 45.24%) and GVHD (21/84, 25.00%). Ninety-five of 158 patients were colonized with at least one gastrointestinal pathogen before conditioning therapy, and the incidence of infectious diarrhea was significantly higher in colonized patients (47/95, 49.47%) than in non-colonized patients (10/63, 15.87%) (P < 0.001). Fourteen of 19 (73.68%) patients who were initially colonized with norovirus pre-transplantation developed a post-transplantation norovirus infection. Twenty-four of 62 (38.71%) patients colonized with Clostridium difficile developed a diarrheal infection. In addition, FilmArray GI panel testing improved the diagnostic yield by almost twofold in our study (55/92, 59.78% vs. 30/92, 32.61%). CONCLUSIONS: Our data show that more than half of pediatric patients who were admitted for HSCT were colonized with various gastrointestinal pathogens, and more than one-third of these pathogens were associated with post-transplantation diarrhea. In addition, the FilmArray GI panel can increase the detection rate of diarrheal pathogens in pediatric HSCT patients, but the panel needs to be optimized for pathogen species, and further studies assessing its clinical impact and cost-effectiveness in this specific patient population are also needed.

13.
Adv Mater ; 35(35): e2303541, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37335806

RESUMO

2D metamaterials have immense potential in acoustics, optics, and electromagnetic applications due to their unique properties and ability to conform to curved substrates. Active metamaterials have attracted significant research attention because of their on-demand tunable properties and performances through shape reconfigurations. 2D active metamaterials often achieve active properties through internal structural deformations, which lead to changes in overall dimensions. This demands corresponding alterations of the conforming substrate, or the metamaterial fails to provide complete area coverage, which can be a significant limitation for their practical applications. To date, achieving area-preserving active 2D metamaterials with distinct shape reconfigurations remains a prominent challenge. In this paper, magneto-mechanical bilayer metamaterials are presented that demonstrate area density tunability with area-preserving capability. The bilayer metamaterials consist of two arrays of magnetic soft materials with distinct magnetization distributions. Under a magnetic field, each layer behaves differently, which allows the metamaterial to reconfigure its shape into multiple modes and to significantly tune its area density without changing its overall dimensions. The area-preserving multimodal shape reconfigurations are further exploited as active acoustic wave regulators to tune bandgaps and wave propagations. The bilayer approach thus provides a new concept for the design of area-preserving active metamaterials for broader applications.

14.
Nat Commun ; 14(1): 8516, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129420

RESUMO

Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.

15.
Adv Mater ; : e2302765, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656872

RESUMO

Liquid crystal elastomers (LCEs) are a class of stimuli-responsive materials that have been intensively studied for applications including artificial muscles, shape morphing structures, and soft robotics due to their capability of large, programmable, and fully reversible actuation strains. To fully take advantage of LCEs, rapid, untethered, and programmable actuation methods are highly desirable. Here, a liquid crystal elastomer-liquid metal (LCE-LM) composite is reported, which enables ultrafast and programmable actuations by eddy current induction heating. The composite consists of LM sandwiched between two LCE layers printed via direct ink writing (DIW). When subjected to a high-frequency alternating magnetic field, the composite is actuated in milliseconds. By moving the magnetic field, the eddy current is spatially controlled for selective actuation. Additionally, sequential actuation is achievable by programming the LM thickness distribution in a sample. With these capabilities, the LCE-LM composite is further exploited for multimodal deformation of a pop-up structure, on-ground omnidirectional robotic motion, and in-water targeted object manipulation and crawling.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35833606

RESUMO

Metamaterials are artificially structured materials with unusual properties, such as negative Poisson's ratio, acoustic band gap, and energy absorption. However, metamaterials made of conventional materials lack tunability after fabrication. Thus, active metamaterials using magneto-mechanical actuation for untethered, fast, and reversible shape configurations are developed to tune the mechanical response and property of metamaterials. Although the magneto-mechanical metamaterials have shown promising capabilities in tunable mechanical stiffness, acoustic band gaps, and electromagnetic behaviors, the existing demonstrations rely on the forward design methods based on experience or simulations, by which the metamaterial properties are revealed only after the design. Considering the massive design space due to the material and structural programmability, a robust inverse design strategy is desired to create the magneto-mechanical metamaterials with preferred tunable properties. In this work, we develop an inverse design framework where a deep residual network replaces the conventional finite-element analysis for acceleration, realizing metamaterials with predetermined global strains under magnetic actuations. For validation, a direct-ink-writing printing method of the magnetic soft materials is adopted to fabricate the designed complex metamaterials. The deep learning-accelerated design framework opens avenues for the designs of magneto-mechanical metamaterials and other active metamaterials with target mechanical, acoustic, thermal, and electromagnetic properties.

17.
Nat Commun ; 13(1): 3118, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701405

RESUMO

Wireless millimeter-scale origami robots have recently been explored with great potential for biomedical applications. Existing millimeter-scale origami devices usually require separate geometrical components for locomotion and functions. Additionally, none of them can achieve both on-ground and in-water locomotion. Here we report a magnetically actuated amphibious origami millirobot that integrates capabilities of spinning-enabled multimodal locomotion, delivery of liquid medicine, and cargo transportation with wireless operation. This millirobot takes full advantage of the geometrical features and folding/unfolding capability of Kresling origami, a triangulated hollow cylinder, to fulfill multifunction: its geometrical features are exploited for generating omnidirectional locomotion in various working environments through rolling, flipping, and spinning-induced propulsion; the folding/unfolding is utilized as a pumping mechanism for controlled delivery of liquid medicine; furthermore, the spinning motion provides a sucking mechanism for targeted solid cargo transportation. We anticipate the amphibious origami millirobots can potentially serve as minimally invasive devices for biomedical diagnoses and treatments.


Assuntos
Robótica , Locomoção , Movimento (Física)
18.
Sci Adv ; 8(13): eabm7834, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353556

RESUMO

Biomimetic soft robotic crawlers have attracted extensive attention in various engineering fields, owing to their adaptivity to different terrains. Earthworm-like crawlers realize locomotion through in-plane contraction, while inchworm-like crawlers exhibit out-of-plane bending-based motions. Although in-plane contraction crawlers demonstrate effective motion in confined spaces, miniaturization is challenging because of limited actuation methods and complex structures. Here, we report a magnetically actuated small-scale origami crawler with in-plane contraction. The contraction mechanism is achieved through a four-unit Kresling origami assembly consisting of two Kresling dipoles with two-level symmetry. Magnetic actuation is used to provide appropriate torque distribution, enabling a small-scale and untethered robot with both crawling and steering capabilities. The crawler can overcome large resistances from severely confined spaces by its anisotropic and magnetically tunable structural stiffness. The multifunctionality of the crawler is explored by using the internal cavity of the crawler for drug storage and release. The magnetic origami crawler can potentially serve as a minimally invasive device for biomedical applications.

19.
Adv Mater ; 34(39): e2204890, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35962737

RESUMO

Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.

20.
ACS Appl Mater Interfaces ; 13(11): 12639-12648, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32897697

RESUMO

Magnetic soft materials (MSMs) have shown potential in soft robotics, actuators, metamaterials, and biomedical devices because they are capable of untethered, fast, and reversible shape reconfigurations as well as controllable dynamic motions under applied magnetic fields. Recently, magnetic shape memory polymers (M-SMPs) that incorporate hard magnetic particles in shape memory polymers demonstrated superior shape manipulation performance by realizing reprogrammable, untethered, fast, and reversible shape transformation and shape locking in one material system. In this work, we develop a multimaterial printing technology for the complex structural integration of MSMs and M-SMPs to explore their enhanced multimodal shape transformation and tunable properties. By cooperative thermal and magnetic actuation, we demonstrate multiple deformation modes with distinct shape configurations, which further enable active metamaterials with tunable physical properties such as sign-change Poisson's ratio. Because of the multiphysics response of the M-MSP/MSM metamaterials, one distinct feature is their capability of shifting between various global mechanical behaviors such as expansion, contraction, shear, and bending. We anticipate that the multimaterial printing technique opens new avenues for the fabrication of multifunctional magnetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA