Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(1): 1-13, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767143

RESUMO

Heat stress is known to result in neuroinflammation, neuronal damage, and disabilities in learning and memory in animals and humans. It has previously been reported that cognitive impairment caused by neuroinflammation may at least in part be mediated by defective hippocampal neurogenesis, and defective neurogenesis has been linked to aberrantly activated microglial cells. Moreover, the release of cytokines within the brain has been shown to contribute to the disruption of cognitive functions in several conditions following neuroinflammation. In this review, we summarize evolving evidence for the current understanding of inflammation-induced deficits in hippocampal neurogenesis, and the resulting behavioral impairments after heat stress. Furthermore, we provide valuable insights into the molecular and cellular mechanisms underlying neuroinflammation-induced deficits in hippocampal neurogenesis, particularly relating to cognitive dysfunction following heat stress. Lastly, we aim to identify potential mechanisms through which neuroinflammation induces cognitive dysfunction, and elucidate how neuroinflammation contributes to defective hippocampal neurogenesis. This review may therefore help to better understand the relationship between hippocampal neurogenesis and heat stress.


Assuntos
Disfunção Cognitiva , Doenças Neuroinflamatórias , Animais , Humanos , Disfunção Cognitiva/etiologia , Hipocampo , Neurogênese/fisiologia , Resposta ao Choque Térmico
2.
FASEB J ; 36(4): e22264, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333405

RESUMO

Heat stress causes many pathophysiological responses in the brain, including neuroinflammation and cognitive deficits. ß-Hydroxybutyric acid (BHBA) has been shown to have neuroprotective effects against inflammation induced by lipopolysaccharide. The aim of the present study was to evaluate the effects of BHBA on neuroinflammation induced by heat stress, as well as the underlying mechanisms. Mice were pretreated with vehicle, BHBA or minocycline (positive control group) and followed by heat exposure (43°C) for 15 min for 14 days. In mice subjected to heat stress, we found that treatment with BHBA or minocycline significantly decreased the level of serum cortisol, the expressions of heat shock protein 70 (HSP70), and the density of c-Fos+ cells in the hippocampus. Surprisingly, the ethological tests revealed that heat stress led to cognitive dysfunctions and could be alleviated by BHBA and minocycline administration. Further investigation showed that BHBA and minocycline significantly attenuated the activation of microglia and astrocyte induced by heat stress. Pro-inflammatory cytokines were attenuated in the hippocampus by BHBA and minocycline treatment. Importantly, compared with the heat stress group, mice in the BHBA treatment group and positive control group experienced a decrease in the expressions of toll-like receptor 4 (TLR4), phospho-p38 (p-p38), and nuclear factor kappa B (NF-κB). Our results elucidated that BHBA inhibits neuroinflammation induced by heat stress by suppressing the activation of microglia and astrocyte, and modulating TLR4/p38 MAPK and NF-κB pathways. This study provides new evidence that BHBA is a potential strategy for protecting animals from heat stress.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Ácido 3-Hidroxibutírico/metabolismo , Animais , Resposta ao Choque Térmico , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Minociclina/metabolismo , Minociclina/farmacologia , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373395

RESUMO

Non-alcoholic fatty liver disease (NAFLD) leads to hippocampal damage and causes a variety of physiopathological responses, including the induction of endoplasmic reticulum stress (ERS), neuroinflammation, and alterations in synaptic plasticity. As an important trace element, strontium (Sr) has been reported to have antioxidant effects, to have anti-inflammatory effects, and to cause the inhibition of adipogenesis. The present study was undertaken to investigate the protective effects of Sr on hippocampal damage in NAFLD mice in order to elucidate the underlying mechanism of Sr in NAFLD. The mouse model of NAFLD was established by feeding mice a high-fat diet (HFD), and the mice were treated with Sr. In the NAFLD mice, we found that treatment with Sr significantly increased the density of c-Fos+ cells in the hippocampus and inhibited the expression of caspase-3 by suppressing ERS. Surprisingly, the induction of neuroinflammation and the increased expression of inflammatory cytokines in the hippocampus following an HFD were attenuated by Sr treatment. Sr significantly attenuated the activation of microglia and astrocytes induced by an HFD. The expression of phospho-p38, ERK, and NF-κB was consistently significantly increased in the HFD group, and treatment with Sr decreased their expression. Moreover, Sr prevented HFD-induced damage to the ultra-structural synaptic architecture. This study implies that Sr has beneficial effects on repairing the damage to the hippocampus induced by an HFD, revealing that Sr could be a potential candidate for protection from neural damage caused by NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Doenças Neuroinflamatórias , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Plasticidade Neuronal , Camundongos Endogâmicos C57BL , Fígado/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982954

RESUMO

The gut microbiota is increasingly considered to play a key role in human immunity and health. The aging process alters the microbiota composition, which is associated with inflammation, reactive oxygen species (ROS), decreased tissue function, and increased susceptibility to age-related diseases. It has been demonstrated that plant polysaccharides have beneficial effects on the gut microbiota, particularly in reducing pathogenic bacteria abundance and increasing beneficial bacteria populations. However, there is limited evidence of the effect of plant polysaccharides on age-related gut microbiota dysbiosis and ROS accumulation during the aging process. To explore the effect of Eucommiae polysaccharides (EPs) on age-related gut microbiota dysbiosis and ROS accumulation during the aging process of Drosophila, a series of behavioral and life span assays of Drosophila with the same genetic background in standard medium and a medium supplemented with EPs were performed. Next, the gut microbiota composition and protein composition of Drosophila in standard medium and the medium supplemented with EPs were detected using 16S rRNA gene sequencing analysis and quantitative proteomic analysis. Here, we show that supplementation of Eucommiae polysaccharides (EPs) during development leads to the life span extension of Drosophila. Furthermore, EPs decreased age-related ROS accumulation and suppressed Gluconobacter, Providencia, and Enterobacteriaceae in aged Drosophila. Increased Gluconobacter, Providencia, and Enterobacteriaceae in the indigenous microbiota might induce age-related gut dysfunction in Drosophila and shortens their life span. Our study demonstrates that EPs can be used as prebiotic agents to prevent aging-associated gut dysbiosis and reactive oxidative stress.


Assuntos
Drosophila , Disbiose , Humanos , Animais , Idoso , Drosophila/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Disbiose/tratamento farmacológico , RNA Ribossômico 16S/genética , Proteômica , Polissacarídeos/farmacologia , Envelhecimento , Enterobacteriaceae , Expectativa de Vida
5.
Int J Neuropsychopharmacol ; 24(5): 419-433, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33283869

RESUMO

BACKGROUND: Neurogenesis in the neonatal period involves the proliferation and differentiation of neuronal stem/progenitor cells and the establishment of synaptic connections. This process plays a critical role in determining the normal development and maturation of the brain throughout life. Exposure to certain physical or chemical factors during the perinatal period can lead to many neuropathological defects that cause high cognitive dysfunction and are accompanied by abnormal hippocampal neurogenesis and plasticity. As an endocrine disruptor, gossypol is generally known to exert detrimental effects in animals exposed under experimental conditions. However, it is unclear whether gossypol affects neurogenesis in the hippocampal dentate gyrus during early developmental stages. METHODS: Pregnant Institute of Cancer Research mice were treated with gossypol at a daily dose of 0, 20, and 50 mg/kg body weight from embryonic day 6.5 to postnatal day (P) 21. The changes of hippocampal neurogenesis as well as potential mechanisms were investigated by 5-bromo-2-deoxyuridine labeling, behavioral tests, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western-blot analyses. RESULTS: At P8, maternal gossypol exposure impaired neural stem cell proliferation in the dentate gyrus and decreased the number of newborn cells as a result of reduced proliferation of BLBP+ radial glial cells and Tbr2+ intermediate progenitor cells. At P21, the numbers of NeuN+ neurons and parvalbumin+ γ-aminobutyric acid-ergic interneurons were increased following 50 mg/kg gossypol exposure. In addition, gossypol induced hippocampal neuroinflammation, which may contribute to behavioral abnormalities and cognitive deficits and decrease synaptic plasticity. CONCLUSIONS: Our findings suggest that developmental gossypol exposure affects hippocampal neurogenesis by targeting the proliferation and differentiation of neuronal stem/progenitor cells, cognitive functions, and neuroinflammation. The present data provide novel insights into the neurotoxic effects of gossypol on offspring.


Assuntos
Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disruptores Endócrinos/farmacologia , Gossipol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Neurogênese/efeitos dos fármacos , Doenças Neuroinflamatórias/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Camundongos , Gravidez
6.
Bipolar Disord ; 23(4): 376-390, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32805776

RESUMO

OBJECTIVES: As a common model for adverse early experience and depression, maternal separation (MS) is always used to investigate the psychological disease. Despite extensive and strong evidence verified the depression-like state induced by MS, little is known about the specific mechanism of MS. Therefore, the present study aimed to investigate the neurobiology mechanism of the MS-induced depression-like state. METHODS: To verify the depression-like behaviors of offspring induced by MS, a series of behavioral tests were performed. Then, in vivo electroporation and three-dimensional reconstruction, combining with immunohistochemistry and BrdU labeling, were mainly used to explore the neurogenesis and synaptogenesis in postnatal dentate gyrus. RESULTS: Prolonged MS indeed induced the depression-like behaviors of offspring in adulthood. Surprisingly, learning and memory were enhanced by prolonged MS. Further investigation indicated that prolonged MS inhibited the proliferation of neural stem cells, impaired the survival, and altered the fate decision of newborn cells, whereas the total length and terminal tips of dendrite, and the spine density, especially thin spine, were significantly increased in prolonged MS mice. CONCLUSIONS: Our results elucidated that prolonged MS induced the depression-like state by impairing postnatal neurogenesis of dentate gyrus. Importantly, our results emphasized that prolonged MS increased the spine density, especially thin spine, by increasing the total length and number of terminal tips of dendrite, thereby enhancing learning and memory.


Assuntos
Transtorno Bipolar , Giro Denteado , Animais , Privação Materna , Camundongos , Neurogênese
7.
Cereb Cortex ; 30(3): 929-941, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31609430

RESUMO

The coordination of cytoskeletal regulation is a prerequisite for proper neuronal migration during mammalian corticogenesis. Neuronal tyrosine-phosphorylated adaptor for the phosphoinositide 3-kinase 1 (Nyap1) is a member of the Nyap family of phosphoproteins, which has been studied in neuronal morphogenesis and is involved in remodeling of the actin cytoskeleton. However, the precise role of Nyap1 in neuronal migration remains unknown. Here, overexpression and knockdown of Nyap1 in the embryonic neocortex of mouse by in utero electroporation-induced abnormal morphologies and multipolar-bipolar transitions of migrating neurons. The level of phosphorylated Nyap1 was crucial for neuronal migration and morphogenesis in neurons. Furthermore, Nyap1 regulated neuronal migration as a downstream target of Fyn, a nonreceptor protein-tyrosine kinase that is a member of the Src family of kinases. Importantly, Nyap1 mediated the role of Fyn in the multipolar-bipolar transition of migrating neurons. Taken together, these results suggest that cortical radial migration is regulated by a molecular hierarchy of Fyn via Nyap1.


Assuntos
Movimento Celular , Neocórtex/citologia , Neocórtex/embriologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Neocórtex/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/metabolismo
8.
J Neurosci ; 38(1): 137-148, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29138282

RESUMO

Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler, but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP-expressing dentate granule cells in slice cultures from reeler, reeler-like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler-like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer.SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Movimento Celular/fisiologia , Giro Denteado/citologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Serina Endopeptidases/fisiologia , Animais , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Grânulos Citoplasmáticos/fisiologia , Células Ependimogliais , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Mutação , Neurônios/fisiologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteína Reelina
9.
Dev Biol ; 441(1): 95-103, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29953879

RESUMO

Proliferation of neural stem cells and differentiation of newly generated cells are crucial steps during the development of mammalian neocortex, which are able to generate suitable number of neurons and glial cells to ensure normal formation of cortex. Any disturbance in these processes leads to structural and functional abnormalities of cerebral cortex, such as epilepsy or intellectual disability. Numerous molecules involved in the development of disorders of the nervous system have been discovered in the recent years. The PI3K/AKT signaling pathway has been shown to be widely involved in the corticogenesis. Recently we could show that overexpression of regulatory subunit P85 of PI3K disrupts neuronal migration. However, it remains unclear whether the regulatory subunit P85 plays a role in the proliferation of neural stem cells and differentiation of newly generated cells during mouse brain development. Here, by using in utero electroporation and immunohistochemistry, we show that overexpression of P85 inhibited proliferation of neural progenitor cells and neuronal differentiation. By using 5-bromo-2-deoxyuridine (BrdU) labeling, we reveal that overexpression of P85 extended the cell cycle duration, which may result in developmental retardation during mouse corticogenesis.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Córtex Cerebral/embriologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Córtex Cerebral/citologia , Camundongos , Células-Tronco Neurais/citologia , Fosfatidilinositol 3-Quinases/genética
10.
J Cell Biochem ; 120(2): 1174-1184, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30335884

RESUMO

Reelin plays important roles in brain development. Reeler mutant mice that lack the protein reelin (RELN) suffer from cell type- and region-dependent changes in their neocortical layers, and adult reeler mutant mice have dilated seminiferous tubules. Meanwhile, the mechanism by which Reelin regulates the spermatogenic cell development in mice and their reproductive abilities remains unclear. In the present study, we used reeler mutant mice to investigate the effects of Reelin on reproduction in mice. The results indicated variations in sex hormone expression among the reeler mice, indicating that they produce few offspring and their spermatogenic cells are irregularly developed. Moreover, glial cell line-derived neurotrophic factor (GDNF)/GDNF family receptor alpha 1, Ras/extracellular regulated protein kinases (ERK), and promyelocytic leukemia zinc finger (PLZF)/chemokine (C-X-C motif) receptor 4 (CXCR4) serve as potential regulatory pathways that respond to the changes in sertoli cells and the niche of male germ cells. Our findings provided valuable insights into the role of reeler in the reproductive abilities of male mice and development of their spermatogonia stem cells.

11.
Development ; 143(6): 1029-40, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893343

RESUMO

In reeler mutant mice, which are deficient in reelin (Reln), the lamination of the cerebral cortex is disrupted. Reelin signaling induces phosphorylation of LIM kinase 1, which phosphorylates the actin-depolymerizing protein cofilin in migrating neurons. Conditional cofilin mutants show neuronal migration defects. Thus, both reelin and cofilin are indispensable during cortical development. To analyze the effects of cofilin phosphorylation on neuronal migration we used in utero electroporation to transfect E14.5 wild-type cortical neurons with pCAG-EGFP plasmids encoding either a nonphosphorylatable form of cofilin 1 (cofilin(S3A)), a pseudophosphorylated form (cofilin(S3E)) or wild-type cofilin 1 (cofilin(WT)). Wild-type controls and reeler neurons were transfected with pCAG-EGFP. Real-time microscopy and histological analyses revealed that overexpression of cofilin(WT) and both phosphomutants induced migration defects and morphological abnormalities of cortical neurons. Of note, reeler neurons and cofilin(S3A)- and cofilin(S3E)-transfected neurons showed aberrant backward migration towards the ventricular zone. Overexpression of cofilin(S3E), the pseudophosphorylated form, partially rescued the migration defect of reeler neurons, as did overexpression of Limk1. Collectively, the results indicate that reelin and cofilin cooperate in controlling cytoskeletal dynamics during neuronal migration.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Forma Celular , Córtex Cerebral/citologia , Cofilina 1/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Serina Endopeptidases/metabolismo , Animais , Contagem de Células , Eletroporação , Embrião de Mamíferos/citologia , Feminino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína Reelina , Transfecção
12.
Nanomedicine ; 15(1): 119-128, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296487

RESUMO

Docosahexaenoic acid (DHA) is one ω-3 fatty acid that is essential for the development and function of the brain. However, a large number of clinical trials found that the DHA supplementation showed no advantage on mental and motor skill development in term infants. A strategy based on DHA nanoencapsulation (nano FO) using an edible plant protein, zein, mimicking the milk structure is applied for enhanced maternal and fetal absorptions of DHA to improve early brain development. The nano FO achieved increased absorption in GI tract, enhanced delivery to the maternal, fetal, and offspring brains, and reduced fatty acid accumulation in the fetal liver. In the behavior assessments, the nano FO diet showed enhanced learning and memory improvement compared to the normal FO diet. It indicated that zein nanoencapsulation is with high potential for drug and nutrient deliveries to brain and through placenta to fetus with no toxicity concern.


Assuntos
Biomimética , Encéfalo/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/metabolismo , Feto/metabolismo , Troca Materno-Fetal , Nanocápsulas/química , Zeína/química , Animais , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/química , Feminino , Trato Gastrointestinal/metabolismo , Absorção Intestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leite , Gravidez , Suspensões
13.
J Cell Biochem ; 119(4): 3663-3670, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29231997

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , Túbulos Seminíferos/citologia , Animais , Diferenciação Celular/fisiologia , Transplante de Células , Cães , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Túbulos Seminíferos/transplante , Telômero/metabolismo
14.
Histochem Cell Biol ; 149(1): 61-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28975414

RESUMO

De novo synthesis of the nucleotide CTP is catalyzed by the essential pyrimidine biosynthesis enzyme CTP synthase (CTPs), which forms large-scale filamentous structures consisting of CTPs termed cytoophidia in prokaryotes and in eukaryotes. Recent studies have shown that cytoophidia are abundant in neuroepithelial stem cells in Drosophila optic lobes and that overexpression of CTPs impairs optic lobe development. Whether CTPs and cytoophidia also play a role in the development of the mammalian cortex remains elusive. Here, we show that overexpression of CTPs by in utero electroporation in the embryonic mouse brain induces formation of cytoophidia in developing cortical neurons and impairs neuronal migration. In addition, the increase of cytoophidia accelerates neuronal differentiation and inhibits neural progenitor cell proliferation by reducing their mitotic activity. Furthermore, we discovered that the cytoophidia diffused during the early G1-phase of the cell cycle. Together, our findings show, for the first time, that CTPs play a significant role in the development of the mammalian cortex.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Citoplasma/enzimologia , Neurogênese , Neurônios/enzimologia , Animais , Carbono-Nitrogênio Ligases/genética , Ciclo Celular , Proliferação de Células , Feminino , Camundongos , Camundongos Endogâmicos , Neurogênese/genética , Gravidez
15.
Cell Tissue Res ; 372(1): 23-31, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29130119

RESUMO

In mammalian developing embryonic cortex, projection neurons migrate from the ventricular zone to the cortical plate, guided by radial glial cells with a transformation between bipolar and multipolar morphology. Previous studies have demonstrated that the PI3K-Akt-mTOR signal plays a critical role in brain development. However, the function of P85 in cortical development is still unclear. In the present study, we found that overexpression of P85 impaired cortical neuronal migration. Using in utero electroporation, we revealed that the length of the leading process in P85 overexpressed neurons became shorter than that in the control group but with more branches. Using markers for new-born neurons, we further found that overexpression of P85 did not affect the ultimate fate of these cortical neurons. These findings indicated that the P85 subunit plays an essential role in neuronal migration and neuronal morphology during mouse corticogenesis.


Assuntos
Movimento Celular , Forma Celular , Córtex Cerebral/citologia , Neurogênese , Neurônios/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem da Célula , Camundongos Endogâmicos C57BL , Neuritos/metabolismo
16.
Arch Toxicol ; 92(1): 529-539, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28884398

RESUMO

Polybrominated diphenyl ethers (PBDEs) are additive flame retardants widely used in various products (e.g., textiles, consumer electronics, and plastics). Strong evidence indicates that PBDEs are developmental neurotoxicants that can cause neurodevelopmental disabilities and cognitive defects. Currently, decabromodiphenyl ether (BDE 209) is the only PBDE permitted for production in most countries. This study investigated the impact of BDE 209 on postnatal neurogenesis in the subventricular zone (SVZ) of ICR mice. For this purpose, pregnant ICR mice were orally administrated a daily dose of 0, 20 or 100 mg/kg BDE 209 from gestation day 6 to postnatal day 16. Bromodeoxyuridine (BrdU) incorporation and in vivo postnatal electroporation were performed to label the newly generated cells in the SVZ. On PND 16, a reduction of type-B stem cells was found in the 100 mg/kg group. BDE 209 also decreased the number of newborn cells and Calretinin+ interneurons in granule cell layer at the dose of 100 mg/kg. In addition, we observed impaired neuronal migration and dendritic development of newborn olfactory granule cells in both 20 and 100 mg/kg groups. In conclusion, developmental exposure to BDE 209 produces adverse effects on SVZ neurogenesis and dendritic growth of mouse offspring. These findings suggest a potential risk of BDE 209 in human neurodevelopment.


Assuntos
Éteres Difenil Halogenados/toxicidade , Ventrículos Laterais/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Calreticulina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/patologia , Feminino , Retardadores de Chama/toxicidade , Ventrículos Laterais/patologia , Masculino , Camundongos Endogâmicos ICR , Neurogênese/efeitos dos fármacos , Bulbo Olfatório/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia
17.
Histochem Cell Biol ; 147(4): 471-479, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27844143

RESUMO

Neuronal migration is essential for the formation of cortical layers, and proper neuronal migration requires the coordination of cytoskeletal regulation. LIMK1 is a serine/threonine protein kinase that mediates actin dynamics by regulating actin depolymerization factor/cofilin. However, the role of LIMK1 in neuronal migration and its potential mechanism remains elusive. Here, we found that using the in utero electroporation to overexpress LIMK1 and its mutants, constitutively active LIMK1 (LIMK1-CA) and dominant-negative LIMK1 (LIMK1-DN), impaired neuronal migration in the embryonic mouse brain. In addition, the aberrant expression of LIMK1-WT and LIMK1-CA induced abnormal branching and increased the length of the leading process, while LIMK1-DN-transfected neurons gave rise to two leading processes. Furthermore, the co-transfection of LIMK1-CA and cofilin-S3A partially rescued the migration deficiency and fully rescued the morphological changes in migrating neurons induced by LIMK1-CA. Our results indicated that LIMK1 negatively regulated neuronal migration by affecting the neuronal cytoskeleton and that its effects were partly mediated by cofilin phosphorylation.


Assuntos
Movimento Celular , Quinases Lim/metabolismo , Neocórtex/embriologia , Neocórtex/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Perfilação da Expressão Gênica , Quinases Lim/genética , Camundongos , Camundongos Endogâmicos C57BL
18.
Cereb Cortex ; 25(10): 3640-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25246510

RESUMO

Newborn neurons migrate along the processes of radial glial cells (RGCs) to reach their final positions in the cortex. Here, we visualized individual migrating neurons and RGCs using in utero electroporation. We show that branching of migrating neurons and RGCs is closely correlated spatiotemporally with the distribution of Reelin. Time-lapse imaging revealed that the leading processes of migrating neurons gave rise to increasingly more branches once their growth cones contacted the Reelin-containing marginal zone. This was accompanied by translocation of the nucleus and gradual shortening of the leading process. Absence of Reelin in reeler mice altered these processes resulting in misorientation, loss of bipolarity, and aberrant migration of cortical neurons. Moreover, in reeler, the branching of the basal processes of RGCs in the marginal zone was severely disrupted. Consistent with previous reports, we show that in dissociated reeler cortical cultures, exposure to recombinant Reelin enhanced dendritic complexity and glial branching. Our results suggest that Reelin induces branching of the leading processes of migrating neurons and that of basal processes of RGCs when they arrive at the Reelin-containing marginal zone. Branching of these processes may be crucial for the termination of nuclear translocation during the migratory process and for correct neuronal positioning.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Células Ependimogliais/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Serina Endopeptidases/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Eletroporação , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo
19.
Histochem Cell Biol ; 144(4): 309-19, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26082196

RESUMO

Radial spoke protein 3 (RSP3) was first identified in Chlamydomonas as a component of radial spoke, which is important for flagellar motility. The mammalian homolog of the Chlamydomonas RSP3 protein is found to be a mammalian protein kinase A-anchoring protein that binds ERK1/2. Here we show that mouse RSP3 is a nucleocytoplasmic shuttling protein. The full-length RSP3-EGFP fusion protein is mainly located in the cytoplasm of Chinese hamster ovary cells. However, by using deletion mutants of RSP3, we identified two nuclear localization signals and a nuclear export signal in RSP3. Moreover, using in utero electroporation, we found that overexpression of RSP3 in the developing cerebral cortex promotes neurogenesis. The layer II/III of the neocortex was much thicker in the RSP3-transfected region than that of the untransfected region in the neocortex. We also show that RSP3 is specifically located in the primary cilia of the radial glial cells, where it acts as a signaling mediator that regulates neurogenesis. Thus, our results suggest that RSP3 is a nucleocytoplasmic shuttling protein and plays an essential role in neurogenesis.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neuroglia/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Células CHO , Cílios , Cricetulus , Eletroporação , Técnicas de Transferência de Genes , Idade Gestacional , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/genética , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Transfecção
20.
Exp Cell Res ; 328(2): 419-28, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25251774

RESUMO

The mammalian cerebral cortex develops through the coordinated migration of postmitotic neurons. Fyn, a member of the Src tyrosine kinase family (SFKs), is involved in the neuronal migration and the absence of Fyn leads to abnormal migration. However, the molecular mechanism whereby Fyn acts on migrating neurons has remained unclear. Here, we employed two Fyn mutants (Fyn259T and FynD390A) to investigate the function of Fyn kinase domain in neuronal migration. Using in utero electroporation, we co-transfected the migrating neurons in embryonic cortex with these mutants combined with plasmid expressing GFP. Interestingly, although both of them impaired neuronal migration, FynD390A, rather than Fyn259T, induced remarkable morphology change. Our work provides in vivo and in vitro evidence that the aspartic acid of Fyn at 390 is indispensable for the radial migration, and it is required for precise cooperation with focal adhesion kinase.


Assuntos
Ácido Aspártico/metabolismo , Movimento Celular/fisiologia , Neurogênese/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Ácido Aspártico/genética , Células CHO , Adesão Celular/genética , Adesão Celular/fisiologia , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Cricetulus , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neurogênese/genética , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fyn/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA