Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 18(17): 11360-11374, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629810

RESUMO

The utilization of carbon-based fibers as a fundamental constituent holds strong appeal for diverse materials and devices. However, the poor fiber graphitic structure resulting from the heat treatment of atactic polyacrylonitrile (PAN) precursors often leads to a modest performance of carbon-based fibers. This paper takes electrospun carbon nanofibers (CNFs) as the research object and provides a seed-assisted graphitization strategy to improve the fiber graphitic structures. The typical melamine/cyanuric acid self-assembly precursor of graphitic carbon nitride is applied as supramolecular seeds in CNFs and demonstrates significant promotion of fiber graphitization, while it decomposes at elevated temperatures. Further studies show that the higher carbon content contributes to the better heat resistance of seeds; thus, nanoscale 2,6-diaminopyridine/cyanuric acid and 2,4,6-triaminopyrimidine/barbituric acid supramolecular seeds are developed. Both systems can be uniformly distributed in PAN precursors through in situ self-assembly and withstand high-temperature carbonization without severe pyrolysis. The dispersed seeds contribute to the formation of fibrillar PAN crystals and promote their conversion to ordered graphitic domains through nucleation and templating roles. The obtained CNFs exhibit increased crystallinity and graphitization degree with improved orientation and refined size of fiber crystals. As a result, the strength, modulus, and elongation at break of CNFs are comprehensively enhanced.

2.
ACS Appl Mater Interfaces ; 13(14): 16846-16858, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784813

RESUMO

Graphene oxide (GO) has been widely used as an additive of polyacrylonitrile (PAN)-based carbon nanofibers (CNFs) to optimize its crystal structure and improve the mechanical performances of nanofibers. However, the homogeneous dispersion of GO nanosheets among entangled PAN molecular chains is always challenging, and the poor dispersion of GO severely limits its positive effects on both the structure and performances of CNFs. Considering this issue, this paper provides for the first time an effective solution to achieve rapid and uniform introduction of GO in PAN-based nanofibers via in situ polymerization, and the optimization of the nanofiber structure by GO is systematically studied in three consecutive stages (polymerization, electrospinning, and carbonization) of the production process. During in situ polymerization, PAN is tightly attached on GO nanosheets to form PAN/GO nanocomposites, and this interaction is maintained throughout the spinning process. Not only the arrangement of PAN molecular chains but also the crystal size of the final turbostratic structure of CNFs is considerably improved by the interaction between PAN and GO. Besides, the direct proof that GO nanosheets promote the crystallization and orientation of the nanofiber matrix is presented. As a result, the tensile strength of CNFs is remarkably increased by 2.45 times with 0.5 wt % addition of GO. In summary, this paper provides a method for efficiently introducing nanoscale additives into PAN-based nanofibers and gives insights into the production of high-performance CNFs with the addition of GO.

3.
Microsc Res Tech ; 82(12): 2026-2034, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31487086

RESUMO

The microfibrils served as the structural elements in polyacrylonitrile (PAN) fiber, which played an important role in the quality of the PAN precursor fibers. Their morphologies were examined by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-resolution transmission electron microscope (HRTEM). The microfibrils existed in all of PAN fibers and arranged evenly in the cross-sections. Furthermore, the pores existed between the microfibrils. The unoriented microfibrillar network was already formed in nascent fiber during coagulated process. Although the microfibrillar network was elongated and the microfibrils oriented along the fiber longitudinal direction during the spinning process, the interconnected microfibrillar network was still existed in the fiber transverse section. Furthermore, the transverse connection of the microfibrils was reinforced and the small microfibrils were tended to aggregate into the large fibrils. For mechanical performance of PAN fibers, their tensile strength increased to 708 MPa and the elongation at break decreased to 15.5%. PAN fibers exhibited ductile rupture during the mechanical test and the microfibrils served as reinforcing elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA