Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 131: 106318, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527992

RESUMO

Targeting sphingosine-1-phosphate receptor 2 (S1PR2) has been proved as a promising strategy to reverse 5-fluorouracil (5-FU) resistance. Here, we report the discovery of the novel JTE-013 derivative compound 37 h as a more effective S1PR2 antagonist to reverse 5-FU resistance in SW620/5-FU and HCT116DPD cells than JTE-013 and previously reported compound 5. Compound 37 h could effectively bind S1PR2 and reduce its expression, thus leading to decreased expression of JMJD3 and dihydropyrimidine dehydrogenase (DPD), while also increasing the level of H3K27me3 to decrease the degradation of 5-FU and thereby increase its intracellular concentration in SW620/5-FU, HCT116DPD, and L02 cells. Furthermore, compound 37 h showed good selectivity to other S1PRs and normal colon cell line NCM460. Western blot analysis demonstrated that compound 37 h could abrogate the FBAL-stimulated upregulation of DPD expression by S1PR2. Importantly, compound 37 h also showed favorable metabolic stability with a long half-life (t1/2) of 7.9 h. Moreover, compound 37 h significantly enhanced the antitumor efficacy of 5-FU in the SW620/5-FU animal model. Thus, the JTE-013-based derivative compound 37 h represents a promising lead compound for the development of novel 5-FU sensitizers for colorectal cancer (CRC) therapy.


Assuntos
Neoplasias Colorretais , Fluoruracila , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Receptores de Esfingosina-1-Fosfato , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Di-Hidrouracila Desidrogenase (NADP)/metabolismo
2.
Eur J Med Chem ; 227: 113923, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34688013

RESUMO

Sphingosine-1-phosphate receptor 2 (S1PR2) has been identified as a brand-new GPCR target for designing antagonists to reverse 5-FU resistance. We herein report the structural optimization and structure-activity relationship of JTE-013 derivatives as S1PR2 antagonists. Compound 9d was the most potent S1PR2 antagonist (KD = 34.8 nM) among developed compounds. Here, compound 9d could significantly inhibit the expression of dihydropyrimidine dehydrogenase (DPD) to reverse 5-FU-resistance in HCT116DPD and SW620/5-FU cells. Further mechanism studies demonstrated that compound 9d not only inhibited S1PR2 but also affected the transcription of S1PR2. In addition, compound 9d also showed acceptable selectivity to normal cells (NCM460). Importantly, compound 9d with suitable pharmacokinetic properties could significantly reverse 5-FU-resistance in the HCT116DPD and SW620/5-FU xenograft models without obvious toxicity, in which the inhibition rates of 5-FU were increased from 23.97% to 65.29% and 27.23% to 60.81%, respectively. Further immunohistochemistry and western blotting analysis also demonstrated that compound 9d significantly decreases the expression of DPD in tumor and liver tissues. These results indicated that compound 9d is a promising lead compound to reverse 5-FU-resistance for colorectal cancer therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Desenho de Fármacos , Fluoruracila/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Antimetabólitos Antineoplásicos/síntese química , Antimetabólitos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/síntese química , Fluoruracila/química , Humanos , Masculino , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ratos , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA