RESUMO
Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase ß-TrCP and blocks its interaction with phosphorylated ß-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.
Assuntos
Espaço Intracelular/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Células-Tronco/patologiaRESUMO
BACKGROUND: Cliffs are recognized as one of the most challenging environments for plants, characterized by harsh conditions such as drought, infertile soil, and steep terrain. However, they surprisingly host ancient and diverse plant communities and play a crucial role in protecting biodiversity. The Taihang Mountains, which act as a natural boundary in eastern China, support a rich variety of plant species, including many unique to cliff habitats. However, it is little known how cliff plants adapt to harsh habitats and the demographic history in this region. RESULTS: To better understand the demographic history and adaptation of cliff plants in this area, we analyzed the chromosome-level genome of a representative cliff plant, T. rupestris var. ciliata, which has a genome size of 769.5 Mb, with a scaffold N50 of 104.92 Mb. The rapid expansion of transposable elements may have contributed to the increasing genome and its ability to adapt to unique and challenging cliff habitats. Comparative analysis of the genome evolution between Taihangia and non-cliff plants in Rosaceae revealed a significant expansion of gene families associated with oxidative phosphorylation, which is likely a response to the abiotic stresses faced by cliff plants. This expansion may explain the long-term adaptation of Taihangia to harsh cliff environments. The effective population size of the two varieties has continuously decreased due to climatic fluctuations during the Quaternary period. Furthermore, significant differences in gene expression between the two varieties may explain the varied leaf phenotypes and adaptations to harsh conditions in different natural distributions. CONCLUSION: Our study highlights the extraordinary adaptation of T. rupestris var. ciliata, shedding light on the evolution of cliff plants worldwide.
Assuntos
Adaptação Fisiológica , Cromossomos de Plantas , Genoma de Planta , China , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Rosaceae/genética , Rosaceae/fisiologia , Ecossistema , Evolução MolecularRESUMO
BACKGROUND: As a xerophytic shrub, forming developed root system dominated with lateral roots is one of the effective strategies for Zygophyllum xanthoxylum to adapt to desert habitat. However, the molecular mechanism of lateral root formation in Z. xanthoxylum is still unclear. Auxin response factors (ARFs) are a master family of transcription factors (TFs) in auxin-mediated biological processes including root growth and development. RESULTS: Here, to determine the relationship between ARFs and root system formation in Z. xanthoxylum, a total of 30 potential ZxARF genes were first identified, and their classifications, evolutionary relationships, duplication events and conserved domains were characterized. 107 ARF protein sequences from alga to higher plant species including Z. xanthoxylum are split into A, B, and C 3 Clades, consisting with previous studies. The comparative analysis of ARFs between xerophytes and mesophytes showed that A-ARFs of xerophytes expanded considerably more than that of mesophytes. Furthermore, in this Clade, ZxARF5b and ZxARF8b have lost the important B3 DNA-binding domain partly and completely, suggesting both two proteins may be more functional in activating transcription by dimerization with AUX/IAA repressors. qRT-PCR results showed that all A-ZxARFs are high expressed in the roots of Z. xanthoxylum, and they were significantly induced by drought stress. Among these A-ZxARFs, the over-expression assay showed that ZxARF7c and ZxARF7d play positive roles in lateral root formation. CONCLUSION: This study provided the first comprehensive overview of ZxARFs and highlighted the importance of A-ZxARFs in the lateral root development.
Assuntos
Zanthoxylum , Zygophyllum , Ácidos Indolacéticos/metabolismo , Zygophyllum/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Oral microbiota imbalance is associated with the progression of various lung diseases, including lung cancer. Pulmonary nodules (PNs) are often considered a critical stage for the early detection of lung cancer; however, the relationship between oral microbiota and PNs remains unknown. METHODS: We conducted a 'Microbiome with pulmonary nodule series study 1' (MCEPN-1) where we compared PN patients and healthy controls (HCs), aiming to identify differences in oral microbiota characteristics and discover potential microbiota biomarkers for non-invasive, radiation-free PNs diagnosis and warning in the future. We performed 16 S rRNA amplicon sequencing on saliva samples from 173 PN patients and 40 HCs to compare the characteristics and functional changes in oral microbiota between the two groups. The random forest algorithm was used to identify PN salivary microbial markers. Biological functions and potential mechanisms of differential genes in saliva samples were preliminarily explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups (COG) analyses. RESULTS: The diversity of salivary microorganisms was higher in the PN group than in the HC group. Significant differences were noted in community composition and abundance of oral microorganisms between the two groups. Neisseria, Prevotella, Haemophilus and Actinomyces, Porphyromonas, Fusobacterium, 7M7x, Granulicatella and Selenomonas were the main differential genera between the PN and HC groups. Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus and Haemophilus constituted the optimal marker sets (area under curve, AUC = 0.80), which can distinguish between patients with PNs and HCs. Further, the salivary microbiota composition was significantly correlated with age, sex, and smoking history (P < 0.001), but not with personal history of cancer (P > 0.05). Bioinformatics analysis of differential genes showed that patients with PN showed significant enrichment in protein/molecular functions related to immune deficiency and energy metabolisms, such as the cytoskeleton protein RodZ, nicotinamide adenine dinucleotide phosphate dehydrogenase (NADPH) dehydrogenase, major facilitator superfamily transporters and AraC family transcription regulators. CONCLUSIONS: Our study provides the first evidence that the salivary microbiota can serve as potential biomarkers for identifying PN. We observed a significant association between changes in the oral microbiota and PNs, indicating the potential of salivary microbiota as a new non-invasive biomarker for PNs. TRIAL REGISTRATION: Clinical trial registration number: ChiCTR2200062140; Date of registration: 07/25/2022.
Assuntos
Neoplasias Pulmonares , Microbiota , Humanos , Saliva/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Biomarcadores , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , OxirredutasesRESUMO
Cell cycle progression and the phytohormones auxin and abscisic acid (ABA) play key roles in primary root growth, but how ABA mediates the transcription of cell cycle-related genes and the mechanism of crosstalk between ABA and auxin requires further research. Here, we report that ABA inhibits primary root growth by regulating the ABA INSENSITIVE4 (ABI4)-CYCLIN-DEPENDENT KINASE B2;2 (CDKB2;2)/CYCLIN B1;1 (CYCB1;1) module-mediated cell cycle as well as auxin biosynthesis in Arabidopsis (Arabidopsis thaliana). ABA induced ABI4 transcription in the primary root tip, and the abi4 mutant showed an ABA-insensitive phenotype in primary root growth. Compared with the wild type (WT), the meristem size and cell number of the primary root in abi4 increased in response to ABA. Further, the transcription levels of several cell-cycle positive regulator genes, including CDKB2;2 and CYCB1;1, were upregulated in abi4 primary root tips. Subsequent chromatin immunoprecipitation (ChIP)-seq, ChIP-qPCR, and biochemical analysis revealed that ABI4 repressed the expression of CDKB2;2 and CYCB1;1 by physically interacting with their promoters. Genetic analysis demonstrated that overexpression of CDKB2;2 or CYCB1;1 fully rescued the shorter primary root phenotype of ABI4-overexpression lines, and consistently, abi4/cdkb2;2-cr or abi4/cycb1;1-cr double mutations largely rescued the ABA-insensitive phenotype of abi4 with regard to primary root growth. The expression levels of DR5promoter-GFP and PIN1promoter::PIN1-GFP in abi4 primary root tips were significantly higher than those in WT after ABA treatment, with these changes being consistent with changes in auxin concentration and expression patterns of auxin biosynthesis genes. Taken together, these findings indicated that ABA inhibits primary root growth through ABI4-mediated cell cycle and auxin-related regulatory pathways.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Divisão Celular , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Sexual dimorphism has been observed in the incidence and prognosis of colorectal cancer (CRC), with men generally exhibiting a slightly higher incidence than women. Research suggests that this difference may be attributed to variations in sex steroid hormone levels and the gut microbiome. The gut microbiome in CRC shows variations in composition and function between the sexes, leading to the concept of 'microgenderome' and 'sex hormone-gut microbiome axis.' Conventional research indicates that estrogens, by promoting a more favorable gut microbiota, may reduce the risk of CRC. Conversely, androgens may have a direct pro-tumorigenic effect by increasing the proportion of opportunistic pathogens. The gut microbiota may also influence sex hormone levels by expressing specific enzymes or directly affecting gonadal function. However, this area remains controversial. This review aims to explore the differences in sex hormone in CRC incidence, the phenomenon of sexual dimorphism within the gut microbiome, and the intricate interplay of the sex hormone-gut microbiome axis in CRC. The objective is to gain a better understanding of these interactions and their potential clinical implications, as well as to introduce innovative approaches to CRC treatment.
Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Feminino , Humanos , Masculino , Caracteres Sexuais , Hormônios Esteroides Gonadais , AndrogêniosRESUMO
Both seed germination and subsequent seedling establishment are key checkpoints during the life cycle of seed plants, yet flooding stress markedly inhibits both processes, leading to economic losses from agricultural production. Here, we report that melatonin (MT) seed priming treatment enhances the performance of seeds from several crops, including soybean, wheat, maize, and alfalfa, under flooding stress. Transcriptome analysis revealed that MT priming promotes seed germination and seedling establishment associated with changes in abscisic acid (ABA), gibberellin (GA), and reactive oxygen species (ROS) biosynthesis and signaling pathways. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed that MT priming increases the expression levels of GA biosynthesis genes, ABA catabolism genes, and ROS biosynthesis genes while decreasing the expression of positive ABA regulatory genes. Further, measurements of ABA and GA concentrations are consistent with these trends. Following MT priming, quantification of ROS metabolism-related enzyme activities and the concentrations of H2O2 and superoxide anions (O2 -) after MT priming were consistent with the results of transcriptome analysis and qRT-PCR. Finally, exogenous application of GA, fluridone (an ABA biosynthesis inhibitor), or H2O2 partially rescued the poor germination of non-primed seeds under flooding stress. Collectively, this study uncovers the application and molecular mechanisms underlying MT priming in modulating crop seed vigor under flooding stress.
Assuntos
Ácido Abscísico , Inundações , Germinação , Giberelinas , Melatonina , Espécies Reativas de Oxigênio , Plântula , Sementes , Melatonina/farmacologia , Melatonina/metabolismo , Germinação/efeitos dos fármacos , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Estresse Fisiológico , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacosRESUMO
We identify a type of polycistronic transcript-derived long noncoding RNAs (lncRNAs) that are 5' small nucleolar RNA (snoRNA) capped and 3' polyadenylated (SPAs). SPA processing is associated with nascent mRNA 3' processing and kinetic competition between XRN2 trimming and Pol II elongation. Following cleavage/polyadenylation of its upstream gene, the downstream uncapped pre-SPA is trimmed by XRN2 until this exonuclease reaches the co-transcriptionally assembled snoRNP. This snoRNP complex prevents further degradation, generates a snoRNA 5' end, and allows continuous Pol II elongation. The imprinted 15q11-q13 encodes two SPAs that are deleted in Prader-Willi syndrome (PWS) patients. These lncRNAs form a nuclear accumulation that is enriched in RNA binding proteins (RBPs) including TDP43, RBFOX2, and hnRNP M. Generation of a human PWS cellular model by depleting these lncRNAs results in altered patterns of RBPs binding and alternative splicing. Together, these results expand the diversity of lncRNAs and provide additional insights into PWS pathogenesis.
Assuntos
Sequência de Bases , Síndrome de Prader-Willi/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , Deleção de Sequência , Transcrição Gênica , Processamento Alternativo , Cromossomos Humanos Par 15 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Loci Gênicos , Impressão Genômica , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
Transcriptional regulation plays a key role in the control of seed dormancy, and many transcription factors (TFs) have been documented. However, the mechanisms underlying the interactions between different TFs within a transcriptional complex regulating seed dormancy remain largely unknown. Here, we showed that TF PHYTOCHROME-INTERACTING FACTOR4 (PIF4) physically interacted with the abscisic acid (ABA) signaling responsive TF ABSCISIC ACID INSENSITIVE4 (ABI4) to act as a transcriptional complex to promote ABA biosynthesis and signaling, finally deepening primary seed dormancy. Both pif4 and abi4 single mutants exhibited a decreased primary seed dormancy phenotype, with a synergistic effect in the pif4/abi4 double mutant. PIF4 binds to ABI4 to form a heterodimer, and ABI4 stabilizes PIF4 at the protein level, whereas PIF4 does not affect the protein stabilization of ABI4. Subsequently, both TFs independently and synergistically promoted the expression of ABI4 and NCED6, a key gene for ABA anabolism. The genetic evidence is also consistent with the phenotypic, physiological and biochemical analysis results. Altogether, this study revealed a transcriptional regulatory cascade in which the PIF4-ABI4 transcriptional activator complex synergistically enhanced seed dormancy by facilitating ABA biosynthesis and signaling.
Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Dormência de Plantas , Transdução de Sinais , Fatores de Transcrição , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Dormência de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ligação Proteica , Sementes/metabolismo , Sementes/genética , Mutação/genéticaRESUMO
PURPOSE: Lidocaine microspheres can prolong the analgesic time to 24-48 h, which still cannot meet the need of postoperative analgesia lasting more than 3 days. Therefore, we added Fe3O4 to the lidocaine microspheres and used an applied magnetic field to attract Fe3O4 to fix the microspheres around the target nerves, reducing the diffusion of magnetic lidocaine microspheres to the surrounding tissues and prolonging the analgesic time. METHODS: Fe3O4-lidocaine-PLGA microspheres were prepared by the complex-emulsion volatilization method to characterize and study the release properties in vitro. The neural anchoring properties and in vivo morphology of the drug were obtained by magnetic resonance imaging. The nerve blocking effect and analgesic effect of magnetic lidocaine microspheres were evaluated by animal experiments. RESULTS: The mean diameter of magnetically responsive lidocaine microspheres: 9.04 ± 3.23 µm. The encapsulation and drug loading of the microspheres were 46.18 ± 3.26% and 6.02 ± 1.87%, respectively. Magnetic resonance imaging showed good imaging of Fe3O4-Lidocain-PLGA microspheres, a drug-carrying model that slowed down the diffusion of the microspheres in the presence of an applied magnetic field. Animal experiments demonstrated that this preparation had a significantly prolonged nerve block, analgesic effect, and a nerve anchoring function. CONCLUSION: Magnetically responsive lidocaine microspheres can prolong analgesia by slowly releasing lidocaine, which can be immobilized around the nerve by a magnetic field on the body surface, avoiding premature diffusion of the microspheres to surrounding tissues and improving drug targeting.
Assuntos
Anestesia Local , Lidocaína , Animais , Lidocaína/farmacologia , Ácido Láctico , Microesferas , AnalgésicosRESUMO
Chuanxiong Rhizoma is a well-known Sichuan-specific herbal medicine. Its original plant, Ligusticum chuanxiong, has been cultivated asexually for a long time. L. chuanxiong has sexual reproductive disorders, which restricts its germplasm innovation. However, there is little research on the reproductive system of L. chuanxiong. This study is based on a comparative anatomical research approach, using morphological dissection, paraffin sectioning, staining and compression, and combined with scanning electron microscopy technology, to observe and compare the flowers, fruits, and seeds at various stages of reproductive growth of L. chuanxiong and its wild relative L. sinense. The results showed that the meiosis of pollen mother cells is abnormal in L. chuanxiong anthers, and the size and number of microspores are uneven and inconsistent in the tetrad stage. tapetum cells are not completely degenerated during anther development. During the pollen ripening stage, there are fine cracks in the anther wall, while most anthers could not release pollen normally. The surface of mature pollen grains is concave and partially deformed, and the pollens are all inactive and cannot germinate in vitro. The starch, polysaccharides, and lipids in the pollen were insufficient. The filaments of L. chuanxiong are short at the flowering stage and recurved downward. Double-hanging fruits were observed in the fruiting stage, being wrinkled; with shriveled seeds. Compared with L. sinense at the same stage, the anthers of L. sinense developed normally, and the pollen grains are vigorous and can germinate in vitro. The double-hanging fruits of L. sinense are full and normal; at the flowering period, the filaments are long and erect, significantly higher than the stigma. Mature blastocysts are visible in the ovary of both L. chuanxiong and L. sinense, and there is no significant difference in stigmas. The conclusion is that during the development of L. chuanxiong stamens, the meiosis of pollen mother cells is abnormal, and tetrad, tapetum, filament and other pollen structures develop abnormally. L. chuanxiong has the characteristic of male infertility, which is an important reason for its sexual reproductive disorders.
Assuntos
Ligusticum , Reprodução , Pólen , Flores , PolissacarídeosRESUMO
This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.
Assuntos
Anexina A1 , Neoplasias Associadas a Colite , Colite , Medicamentos de Ervas Chinesas , Camundongos , Animais , Colite/complicações , Colite/tratamento farmacológico , Colite/genética , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/metabolismo , Fusobacterium nucleatum/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Peso Corporal , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , AzoximetanoRESUMO
PURPOSE: To investigate the feasibility and clinical utility of a compressed-sensing-accelerated subtractionless whole-body MRA (CS-WBMRA) protocol with only contrast injection for suspected arterial diseases, by comparison to conventional dual-pass subtraction-based whole-body MRA (conventional-WBMRA) and available computed tomography angiography (CTA). MATERIALS AND METHODS: This prospective study assessed 86 patients (mean age, 56 years ± 16.4 [standard deviation]; 25 women) with suspected arterial diseases from May 2021 to December 2022, who underwent CS-WBMRA (n = 48, mean age, 55.9 years ± 16.4 [standard deviation]; 25 women) and conventional-WBMRA (n = 38, mean age, 48 years ± 17.4 [standard deviation]; 20 women) on a 3.0 T MRI after random group assignment based on the chronological order of enrolment. Of all enrolled patients administered the CS-WBMRA protocol, 35% (17/48) underwent CTA as required by clinical demands. Two experienced radiologists independently scored the qualitative image quality and venous enhancement contamination. Quantitative image assessment was carried out by determining and comparing the apparent signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of four representative arterial segments. The total examination time and contrast-dose were also recorded. The independent samples t-test or the Wilcoxon rank sum test was used for statistical analysis. RESULTS: The overall scores of CS-WBMRA outperformed those of conventional-WMBRA (3.40 ± 0.60 vs 3.22 ± 0.55, P < 0.001). In total, 1776 and 1406 arterial segments in the CS-WBMRA and conventional-WBMRA group were evaluated. Qualitative image scores for 7 (of 15) vessel segments in the CS-WMBRA group had statistically significantly increased values compared to those of the conventional-WBMRA groups (P < 0.05). Scores from the other 8 segments showed similar image quality (P > 0.05) between the two protocols. In the quantitative analysis, overall apparent SNRs were significantly higher in the conventional-WBMRA group than in the CS-WBMRA group (214.98 ± 136.05 vs 164.90 ± 118.05; P < 0.001), while overall apparent CNRs were not significantly different in these two groups (CS vs conventional: 107.13 ± 72.323 vs 161.24 ± 118.64; P > 0.05). In the CS-WBMRA group, 7 of 1776 (0.4%) vessel segments were contaminated severely by venous enhancement, while in the convention-WBMRA group, 317 of 1406 (23%) were rated as severe contamination. In the CS-WBMRA group, total examination and reconstruction times were only 7 min and 10 min, respectively, vs 20 min and < 30 s for the conventional WBMRA group, respectively. The contrast agent dose used in the CS-WBMRA protocol was reduced by half compared to conventional-WBMRA protocol (18.7 ± 3.5 ml vs 37.2 ± 5.4 ml, P = 0.008). CONCLUSION: The CS-WBMRA protocol provides excellent image quality and sufficient diagnostic accuracy for whole-body arterial disease, with relatively faster workflow and half-dose reduction of contrast agent, which has greater potential in clinical practice compared with conventional-WBMRA.
Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Feminino , Pessoa de Meia-Idade , Estudos de Viabilidade , Estudos Prospectivos , Valor Preditivo dos Testes , Angiografia por Ressonância Magnética/métodosRESUMO
A 34-year-old man presented with paroxysmal hypogastralgia during defecation for 2 weeks. Physical and laboratory examination findings were unremarkable, other than a depression located 1 cm above the dentate line, accompanied by mild tenderness and a clubbed induration extending to the rectum. Colonoscopy showed a 2.0×0.8 cm longitudinal, protruding mass in the posterior wall of the lower rectum. Endosonography revealed a mixed echogenic mass originating from the rectal submucosa, with no sign of muscular wall disruption. There was no evidence of Crohn's or other diseases. Following anorectal consultation, we suspected a submucosal or internal blind fistula since the patient was symptomatic with a superficial mass which communicated to the rectum. The location and depth of the mass indicated that endoscopic resection might allow for removal of the lesion without impairment of the anorectal anatomy and function. After obtaining the patient's consent, endoscopic submucosal dissection (ESD) was performed. En bloc resection was achieved using a disposable, high-frequency knife (Micro-Tech, China). No adverse events occurred. Histopathological examination revealed a benign fistula composed of local submucous granulomatous tissue proliferation and a focal mucous epithelial defect. The patient's symptoms were relieved postoperatively, and no recurrence was evident after 6 months.
Assuntos
Ressecção Endoscópica de Mucosa , Fístula Retal , Masculino , Humanos , Adulto , Reto/cirurgia , Colonoscopia , Endossonografia , Fístula Retal/diagnóstico por imagem , Fístula Retal/cirurgia , Resultado do TratamentoRESUMO
Objective: To uncover and identify the differences in salivary microbiota profiles and their potential roles between patients with pulmonary nodules (PN) and healthy controls, and to propose new candidate biomarkers for the early warning of PN. Methods: 16S rRNA amplicon sequencing was performed with the saliva samples of 173 PN patients, or the PN group, and 40 health controls, or the HC group, to compare the characteristics, including diversity, community composition, differential species, and functional changes of salivary microbiota in the two groups. Random forest algorithm was used to identify salivary microbial markers of PN and their predictive value for PN was assessed by area under the curve (AUC). Finally, the biological functions and potential mechanisms of differentially-expressed genes in saliva samples were preliminarily investigated on the basis of predictive functional profiling of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2). Results: The α diversity and ß diversity of salivary microbiota in the PN group were higher than those in the HC group (P<0.05). Furthermore, there were significant differences in the community composition and the abundance of oral microorganisms between the PN and the HC groups (P<0.05). Random forest algorithm was applied to identify differential microbial species. Porphyromonas, Haemophilus, and Fusobacterium constituted the optimal marker sets (AUC=0.79, 95% confidence interval: 0.71-0.86), which can be used to effectively identify patients with PN. Bioinformatics analysis of the differentially-expressed genes revealed that patients with PN showed significant enrichment in protein/molecular functions involved in immune deficiency and redox homeostasis. Conclusion: Changes in salivary microbiota are closely associated with PN and may induce the development of PN or malignant transformation of PN, which indicates the potential of salivary microbiota to be used as a new non-invasive humoral marker for the early diagnosis of PN.
Assuntos
Microbiota , Saliva , Humanos , Estudos Prospectivos , RNA Ribossômico 16S/genética , FilogeniaRESUMO
Recent investigations have revealed that puerarin (PU) alleviates cadmium (Cd)-caused hepatic damage via inhibiting oxidative stress. Mitochondria are dynamic organelles and play a critical part in regulating the occurrence of oxidative stress, but the role of mitochondria in the protection of PU against hepatocellular damage caused by Cd exposure remains unknown. Thus, this study was aimed to clarify this issue using mouse hepatocyte AML-12 cell line. Transmission electron microscopy analysis firstly showed that PU prevents Cd-induced mitochondrial ultrastructure damage. Mitochondrial network image analysis by confocal microscopy revealed that PU exerts the protection against Cd-induced cytotoxicity via restoring mitochondrial network fragmentation. Also, mitochondrial dynamic protein expression profiles showed that enhanced fission protein levels and inhibited fusion protein levels in Cd-treated cells were significantly reversed by PU, suggesting the protective effect of PU against Cd-induced mitochondrial fission. Moreover, changes of intracellular ATP level and protein levels of key regulators involving in mitochondrial biogenesis indicated that Sirtuin-1(Sirt1) pathway may be involved in the protection of Cd-impaired mitochondrial function by PU. Next, Sirt1 protein levels in treated cells were effectively regulated by genetic knockdown or chemical agonist SRT1720. Accordingly, alleviation of Cd-induced mitochondrial fission assays and cell viability by PU was markedly regulated by SRT1720 or Sirt1 knockdown, suggesting the indispensable role of Sirt1 in this process. Collectively, these findings highlight that PU prevents Cd-induced mitochondrial fission to alleviate cytotoxicity via Sirt1-dependent pathway, which provide novel evidences to fully understand the hepatoprotective action of PU against heavy metal toxicity.
Assuntos
Leucemia Mieloide Aguda , Dinâmica Mitocondrial , Animais , Camundongos , Cádmio/toxicidade , Sirtuína 1/genéticaRESUMO
Circulating tumor cells (CTCs) are associated with a higher risk of metastasis in tumor patients. The adhesion and arrest of CTCs at a secondary site is an essential prerequisite for the occurrence of tumor metastasis. CTC reattachment has shown to be dependent on microtentacle (McTN) formation in vivo. However, the specific molecular mechanism of McTN formation in suspended cancer cells remains largely unclear. Here, we demonstrated that the activation of Notch-1 signaling triggers McTN formation to facilitate cell reattachment in suspended cell culture conditions. Moreover, molecular mechanistic studies revealed that McTN formation is governed by the balance between microtubule-driven outgrowth and actomyosin-driven cell contractility. The activation of Notch-1 downregulates the acetylation level of microtubules via the Cdc42/HDAC6 pathway, which contributes to microtubule polymerization. Simultaneously, Notch-1 signaling-induced Cdc42 activation also reduced phosphorylation of myosin regulatory light chain, leading to cell contractility attenuation. Altogether, these results defined a novel mechanism by which Notch-1 signaling disturbs the balance between the expansion of microtubules and contraction of the cortical actin, which promotes McTN formation and cell reattachment. Our findings provide a new perspective on the effective therapeutic target to prevent CTC reattachment.
Assuntos
Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Receptor Notch1/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Neoplasias da Mama/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Cadeias Leves de Miosina/metabolismo , Metástase Neoplásica , Transplante de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Fosforilação , Transdução de SinaisRESUMO
Salinity stress enhances reactive oxygen species (ROS) accumulation by activating the transcription of NADPH oxidase genes such as RbohD, thus mediating plant developmental processes, including seed germination. However, how salinity triggers the expression of ROS-metabolism-related genes and represses seed germination has not yet been fully addressed. In this study, we show that Abscisic Acid-Insensitive 4 (ABI4), a key component in abscisic acid (ABA) signaling, directly combines with RbohD and Vitamin C Defective 2 (VTC2), the key genes involved in ROS production and scavenging, to modulate ROS metabolism during seed germination under salinity stress. Salinity-induced ABI4 enhances RbohD expression by physically interacting with its promoter, and subsequently promotes ROS accumulation, thus resulting in cell membrane damage and a decrease in seed vigor. Additional genetic evidence indicated that the rbohd mutant largely rescues the salt-hypersensitive phenotype of ABI4 overexpression seeds. Consistently, the abi4/vtc2 double mutant showed the salt-sensitive phenotype, similar to the vtc2 mutant, suggesting that both RbohD and VTC2 are epistatic to ABI4 genetically. Altogether, these results suggest that the salt-induced RbohD transcription and ROS accumulation is dependent on ABI4, and that the ABI4-RbohD/VTC2 regulatory module integrates both ROS metabolism and cell membrane integrity, ultimately repressing seed germination under salinity stress.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Espécies Reativas de Oxigênio , Estresse Salino , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Circular dorsal ruffles (CDRs) are a kind of special ring-shaped membrane structure rich in F-actin, it is highly involved in the invasion-metastasis of tumor. Shear stress is one of the biophysical elements that affects the fate of tumor cells. However, how shear stress contributes to the CDRs formation is still unclear. In this study, we found that shear stress stimulated the formation of CDRs and promoted the migration of human breast MDA-MB-231 carcinoma cells. Integrin-linked kinase (ILK) mediated the recruiting of ADP-ribosylation factors (ARAP1/Arf1) to CDRs. Meanwhile, the transfection of ARAP1 or Arf1 mutant decreased the number of cells with CDRs, the CDRs areas and perimeters, thus blocked the cancer cell migration. This indicated that the ARAP1/Arf1 were necessary for the CDRs formation and cancer cell migration. Further study revealed that shear stress could stimulate the formation of intracellular macropinocytosis (MPS) thus promoted the ARAP1/Arf1 transportation to early endosome to regulate cancer cell migration after the depolymerization of CDRs. Our study elucidates that the CDRs formation is essential in shear stress-induced breast cancer cell migration, which provides a new research target for exploring the cytoskeletal mechanisms of breast cancer malignance.
Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Neoplasias/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Citoesqueleto de Actina/química , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/química , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Neoplasias/patologia , Pinocitose/fisiologia , Polimerização , Proteínas Serina-Treonina Quinases/metabolismo , Estresse MecânicoRESUMO
PURPOSE: To investigate the clinical utility of pointwise encoding time reduction with radial acquisition in subtraction-based magnetic resonance angiography (PETRA-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA) to evaluate saccular unruptured intracranial aneurysms (UIAs). METHODS: A total of 49 patients with 54 TOF-MRA-identified saccular UIAs were enrolled. The morphologic parameters, contrast-to-noise-ratios (CNRs), and sharpness of aneurysms were measured using PETRA-MRA and TOF-MRA. Two radiologists independently evaluated subjective image scores, focusing on aneurysm signal homogeneities and sharpness depictions using a 4-point scale: 4, excellent; 3, good; 2, poor; 1, not assessable. PETRA-MRA and TOF-MRA acoustic noises were measured. RESULTS: All aneurysms were detected with PETRA-MRA. The morphologic parameters of 15 patients evaluated with PETRA-MRA were more closely correlated with those receiving computed tomography angiography over those receiving TOF-MRA. No significant differences between PETRA-MRA and TOF-MRA parameters were seen in the 54 UIAs (p > 0.10), excluding those with inflow angles (p < 0.05). In four patients with inflow angles on PETRA-MRA, the angles were more closely related to those of digital subtraction angiography than those of TOF-MRA. CNRs between TOF-MRA and PETRA-MRA were comparable (p = 0.068), and PETRA-MRA sharpness values and subjective image scores were significantly higher than those of TOF-MRA (p < 0.001). Inter-observer agreements were excellent for both PETRA-MRA and TOF-MRA (intraclass correlation coefficients were 0.90 and 0.97, respectively). The acoustic noise levels of PETRA-MRA were much lower than those of TOF-MRA (59 vs.73 dB, p < 0.01). CONCLUSIONS: PETRA-MRA, with better visualization of aneurysms and lower acoustic noise levels than TOF-MRA, showed a superior diagnostic performance for depicting saccular UIAs.