Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 67(3): 393-401, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29127433

RESUMO

Chimeric antigen receptor-modulated T lymphocytes (CAR-T) have emerged as a powerful tool for arousing anticancer immunity. Endogenous ligands for tumor antigen may outperform single-chain variable fragments to serve as a component of CARs with high cancer recognition efficacy and minimized immunogenicity. As heterodimerization and signaling partners for human epidermal growth factor receptor 2 (HER2), HER3/HER4 has been implicated in tumorigenic signaling and therapeutic resistance of breast cancer. In this study, we engineered T cells with a CAR consisting of the extracellular domain of heregulin-1ß (HRG1ß) that is a natural ligand for HER3/HER4, and evaluated the specific cytotoxicity of these CAR-T cells in cultured HER3 positive breast cancer cells and xenograft tumors. Our results showed that HRG1ß-CAR was successfully constructed, and T cells were transduced at a rate of 50%. The CAR-T cells specifically recognized and killed HER3-overexpressing breast cancer cells SK-BR-3 and BT-474 in vitro, and displayed potent tumoricidal effect on SK-BR-3 xenograft tumor models. Our results suggest that HRG1ß-based CAR-T cells effectively suppress breast cancer driven by HER family receptors, and may provide a novel strategy to overcome cancer resistance to HER2-targeted therapy.


Assuntos
Neoplasias da Mama/terapia , Terapia Baseada em Transplante de Células e Tecidos , Neuregulina-1/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Linfócitos T Citotóxicos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Apoptose , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Immunol ; 293(1): 10-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461612

RESUMO

HLA-G and HLA-E are non-classical HLA Ib molecules. Recently, increasingly more reports have shown that HLA-G is highly expressed in different malignancies. In this article, we detected the expression levels of HLA-G and HLA-E in primary colorectal cancer patients. Our results showed that 70.6% and 65.7% of the colorectal cancer tissues had positive HLA-G or HLA-E expression, respectively, and that 46.1% positively expressed both molecules. We also analyzed the correlations between the expression levels of HLA-G, HLA-E or both combined and the clinical outcomes of the patients. Kaplan-Meier analysis results showed that the expression levels of HLA-G or HLA-E alone and the combined expression of both molecules were all statistically correlated with the overall survival of colorectal cancer patients. Cox multivariate analysis showed that only HLA-G expression can serve as independent factor for OS. Our results also showed that the expression of HLA-E was significantly correlated with tumor metastasis.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Antígenos HLA-G/genética , Antígenos de Histocompatibilidade Classe I/genética , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Expressão Gênica , Antígenos HLA-G/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Análise de Sobrevida , Antígenos HLA-E
3.
Int J Cancer ; 135(6): 1356-68, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24615544

RESUMO

Resistance to trastuzumab and concomitantly distal metastasis are leading causes of mortality in HER2-positive breast cancers, the molecular basis of which remains largely unknown. Here, we generated trastuzumab-resistant breast cancer cells with increased tumorigenicity and invasiveness compared with parental cells, and observed robust epithelial-mesenchymal transition (EMT) and consistently elevated TGF-ß signaling in these cells. MiR-200c, which was the most significantly downregulated miRNA in trastuzumab-resistant cells, restored trastuzumab sensitivity and suppressed invasion of breast cancer cells by concurrently targeting ZNF217, a transcriptional activator of TGF-ß, and ZEB1, a known mediator of TGF-ß signaling. Given the reported backward inhibition of miR-200c by ZEB1, ZNF217 also exerts a feedback suppression of miR-200c via TGF-ß/ZEB1 signaling. Restoration of miR-200c, silencing of ZEB1 or ZNF217 or blockade of TGF-ß signaling increased trastuzumab sensitivity and suppressed invasiveness of breast cancer cells. Therefore, our study unraveled nested regulatory circuits of miR-200c/ZEB1 and miR-200c/ZNF217/TGF-ß/ZEB1 in synergistically promoting trastuzumab resistance and metastasis of breast cancer cells. These findings provide novel insights into the common role of EMT and related molecular machinery in mediating the malignant phenotypes of breast cancers.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Proteínas de Homeodomínio/genética , Humanos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Metástase Neoplásica , Transativadores/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco
4.
Theranostics ; 10(5): 2422-2435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104514

RESUMO

Macrophages are essential for wound repair after myocardial infarction (MI). CD226, a member of immunoglobulin superfamily, is expressed on inflammatory monocytes, however, the role of CD226 in infarct healing and the effect of CD226 on macrophage remain unknown. Methods: Wild type and CD226 knockout (CD226 KO) mice were subjected to permanent coronary ligation. CD226 expression, cardiac function and ventricular remodeling were evaluated. Profile of macrophages, myofibroblasts, angiogenesis and monocytes mobilization were determined. Results: CD226 expression increased in the infarcted heart, with a peak on day 7 after MI. CD226 KO attenuated infarct expansion and improved infarct healing after MI. CD226 deletion resulted in increased F4/80+ CD206+ M2 macrophages and diminished Mac-3+ iNOS+ M1 macrophages accumulation in the infarcted heart, as well as enrichment of α-smooth muscle actin positive myofibroblasts and Ki67+ CD31+ endothelial cells, leading to increased reparative collagen deposition and angiogenesis. Furthermore, CD226 deletion restrained inflammatory monocytes mobilization, as revealed by enhanced retention of Ly6Chi monocytes in the spleen associated with a decrease of Ly6Chi monocytes in the peripheral blood, whereas local proliferation of macrophage in the ischemic heart was not affected by CD226 deficiency. In vitro studies using bone marrow-derived macrophages showed that CD226 deletion potentiated M2 polarization and suppressed M1 polarization. Conclusion: CD226 expression is dramatically increased in the infarcted heart, and CD226 deletion improves post-infarction healing and cardiac function by favoring macrophage polarization towards reparative phenotype. Thus, inhibition of CD226 may represent a novel therapeutic approach to improve wound healing and cardiac function after MI.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Remodelação Ventricular , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Células Endoteliais/metabolismo , Ativação de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fenótipo , Cicatrização
5.
Theranostics ; 9(5): 1247-1263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867828

RESUMO

Background and Aims: Prostate specific membrane antigen (PSMA) is specifically expressed on prostate epithelial cells and markedly overexpressed in almost all prostate cancers. TRIM24 is also up-regulated from localized prostate cancer to metastatic castration-resistant prostate cancer (CRPC). Because of the high relevance of TRIM24 for cancer development and the universal expression of PSMA in CPRC, we investigated the efficacy of human monoclonal PSMA antibody (PSMAb)-based platform for the targeted TRIM24 siRNA delivery and its therapeutic efficacy in CRPC in vivo and in vitro. Methods: The therapeutic complexes were constructed by conjugating PSMAb and sulfo-SMCC-protamine, and encapsulating TRIM24 siRNA. Flow cytometry, immunofluorescence, and fluorescence imaging were performed to detect the receptor-binding, internalization, and targeted delivery of PSMAb-sulfo-SMCC-protamine (PSP)-FAM-siRNA complex (PSPS) in vitro and in vivo. CCK-8, plate-colony formation, apoptosis, cell cycle, and Transwell assays were performed to evaluate the therapeutic potential of the PSP-TRIM24 siRNA complex in vitro, whereas the in vivo therapeutic efficacy was monitored by small animal imaging, radiography, and micro CT. Results: We confirmed that PSP could efficiently protect siRNA from enzymatic digestion, enable targeted delivery of siRNA, and internalize and release siRNA into PSMA-positive (PSMA+) prostate cancer cells in vitro and in vivo. Silencing TRIM24 expression by the PSP-TRIM24 siRNA complex could dramatically suppress proliferation, colony-formation, and invasion of PSMA+ CRPC cells in vitro, and inhibit tumor growth of PSMA+ CRPC xenografts and bone loss in PSMA+ CRPC bone metastasis model without obvious toxicity at therapeutic doses in vivo. Conclusion: PSMAb mediated TRIM24 siRNA delivery platform could significantly inhibit cell proliferation, colony-formation, and invasion in PSMA+ CRPC in vitro and suppressed tumor growth and bone loss in PSMA+ CRPC xenograft and bone metastasis model.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígenos de Superfície/imunologia , Proteínas de Transporte/antagonistas & inibidores , Glutamato Carboxipeptidase II/imunologia , Terapia de Alvo Molecular/métodos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Nus , Modelos Teóricos , Usos Terapêuticos , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncotarget ; 8(52): 90028-90036, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29163808

RESUMO

It is widely acknowledged that interleukin 17-producing T helper (Th17) cells are critically participant in the pathogenesis of multiple sclerosis. In the current study, we identified that the expression of CD4+T cells specific co-inhibitory molecule B7-homologue 1(B7-H1) in spleenocytes and mononuclear cells isolated from brains and spinal cord were positive correlated with Th1 and Th17 cells generation and disease severity in experimental autoimmune encephalomyelitis (EAE). Furthermore, B7-H1 transgenic mice developed milder EAE symptoms and fewer Th17 cells than B7-H1 wild type mice. We also found the proliferation of naïve CD4+CD62+T cells isolated from B7-H1 transgenic mice was inhibited. And naïve T cells isolated from B7-H1 transgenic mice produced fewer Th17 cells than WT mice in Th17-polarizing conditions, but the Th1, Th2, and inducible Treg differentiation were the similar in naïve T cells isolated from B7-H1 transgenic mice and WT mice. In conclusion, our study show CD4+T cells specific B7-H1 is a slective inhibitor in proliferation of naïve T cells, Th17 differentiation and pathogenesis of multiple sclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA