Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 286(31): 27454-70, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21642421

RESUMO

Dhh1 is a highly conserved DEAD-box protein that has been implicated in many processes involved in mRNA regulation. At least some functions of Dhh1 may be carried out in cytoplasmic foci called processing bodies (P-bodies). Dhh1 was identified initially as a putative RNA helicase based solely on the presence of conserved helicase motifs found in the superfamily 2 (Sf2) of DEXD/H-box proteins. Although initial mutagenesis studies revealed that the signature DEAD-box motif is required for Dhh1 function in vivo, enzymatic (ATPase or helicase) or ATP binding activities of Dhh1 or those of any its many higher eukaryotic orthologues have not been described. Here we provide the first characterization of the biochemical activities of Dhh1. Dhh1 has weaker RNA-dependent ATPase activity than other well characterized DEAD-box helicases. We provide evidence that intermolecular interactions between the N- and C-terminal RecA-like helicase domains restrict its ATPase activity; mutation of residues mediating these interactions enhanced ATP hydrolysis. Interestingly, the interdomain interaction mutant displayed enhanced mRNA turnover, RNA binding, and recruitment into cytoplasmic foci in vivo compared with wild type Dhh1. Also, we demonstrate that the ATPase activity of Dhh1 is not required for it to be recruited into cytoplasmic foci, but it regulates its association with RNA in vivo. We hypothesize that the activity of Dhh1 is restricted by interdomain interactions, which can be regulated by cellular factors to impart stringent control over this very abundant RNA helicase.


Assuntos
RNA Helicases DEAD-box/metabolismo , Adenosina Trifosfatases/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo
2.
EMBO J ; 27(11): 1575-84, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18480842

RESUMO

Rap1 (repressor-activator protein 1) is a multifunctional protein that controls telomere function, silencing and the activation of glycolytic and ribosomal protein genes. We have identified a novel function for Rap1, regulating the ribonucleotide reductase (RNR) genes that are required for DNA repair and telomere expansion. Both the C terminus and DNA-binding domain of Rap1 are required for the activation of the RNR genes, and the phenotypes of different Rap1 mutants suggest that it utilizes both regions to carry out distinct steps in the activation process. Recruitment of Rap1 to the RNR3 gene is dependent on activation of the DNA damage checkpoint and chromatin remodelling by SWI/SNF. The dependence on SWI/SNF for binding suggests that Rap1 acts after remodelling to prevent the repositioning of nucleosomes back to the repressed state. Furthermore, the recruitment of Rap1 requires TAF(II)s, suggesting a role for TFIID in stabilizing activator binding in vivo. We propose that Rap1 acts as a rheostat controlling nucleotide pools in response to shortened telomeres and DNA damage, providing a mechanism for fine-tuning the RNR genes during checkpoint activation.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Ribonucleosídeo Difosfato Redutase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Mutação , Regiões Promotoras Genéticas , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
3.
Mol Cell Biol ; 34(3): 303-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24248595

RESUMO

Histone N-terminal tails play crucial roles in chromatin-related processes. The tails of histones H3 and H4 are highly conserved and well characterized, but much less is known about the functions of the tails of histones H2A and H2B and their sequences are more divergent among eukaryotes. Here we characterized the function of the only highly conserved region in the H2B tail, the H2B repression (HBR) domain. Once thought to play a role only in repression, it also has an uncharacterized function in gene activation and DNA damage responses. We report that deletion of the HBR domain impairs the eviction of nucleosomes at the promoters and open reading frames of genes. A closer examination of the HBR domain mutants revealed that they displayed phenotypes similar to those of histone chaperone complex FACT mutants, including an increase in intragenic transcription and the accumulation of free histones in cells. Biochemical characterization of recombinant nucleosomes indicates that deletion of the HBR domain impairs FACT-dependent removal of H2A-H2B from nucleosomes, suggesting that the HBR domain plays an important role in allowing FACT to disrupt dimer-DNA interactions. We have uncovered a previously unappreciated role for the HBR domain in regulating chromatin structure and have provided insight into how FACT acts on nucleosomes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/genética , Northern Blotting , Proteínas de Ligação a DNA/genética , Galactoquinase/genética , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/química , Histonas/genética , Humanos , Immunoblotting , Mutação , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Multimerização Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética
4.
PLoS One ; 9(6): e97969, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933654

RESUMO

Resveratrol has been widely reported to reduce cancer progression in model systems and to selectively induce cell death in transformed cell lines. Many enzymes have been reported to respond to resveratrol in mammalian cells, including the Ataxia-Telangiectasia Mutated (ATM) protein kinase that acts in DNA damage recognition, signaling, and repair. Here we investigate the responses of ATM to resveratrol exposure in normal and transformed human cell lines and find that ATM autophosphorylation and substrate phosphorylation is stimulated by resveratrol in a manner that is promoted by reactive oxygen species (ROS). We observe direct stimulatory effects of resveratrol on purified ATM in vitro and find that the catalytic efficiency of the kinase on a model substrate is increased by resveratrol. In the purified system we also observe a requirement for oxidation, as the effect of resveratrol on ATM signaling is substantially reduced by agents that prevent disulfide bond formation in ATM. These results demonstrate that resveratrol effects on ATM are direct, and suggest a mechanism by which the oxidizing environment of transformed cells promotes ATM activity and blocks cell proliferation.


Assuntos
Antioxidantes/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transformação Celular Neoplásica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estilbenos/farmacologia , Bleomicina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Fosforilação/efeitos dos fármacos , Resveratrol , Transdução de Sinais/efeitos dos fármacos
5.
Mol Cell Biol ; 30(14): 3635-45, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20498280

RESUMO

Chromatin is regulated by cross talk among different histone modifications, which can occur between residues within the same tail or different tails in the nucleosome. The latter is referred to as trans-tail regulation, and the best-characterized example of this is the dependence of H3 methylation on H2B ubiquitylation. Here we describe a novel form of trans-tail regulation of histone modifications involving the N-terminal tail of histone H2A. Mutating or deleting residues in the N-terminal tail of H2A reduces H2B ubiquitylation and H3K4 methylation but does not affect the recruitment of the modifying enzymes, Rad6/Bre1 and COMPASS, to genes. The H2A tail is required for the incorporation of Cps35 into COMPASS, and increasing the level of ubiquitylated H2B in H2A tail mutants suppresses the H3K4 methylation defect, suggesting that the H2A tail regulates H2B-H3 cross talk. We mapped the region primarily responsible for this regulation to the H2A repression domain, HAR. The HAR and K123 of H2B are in close proximity to each other on the nucleosome, suggesting that they form a docking site for the ubiquitylation machinery. Interestingly, the HAR is partially occluded by nucleosomal DNA, suggesting that the function of the H2A cross talk pathway is to restrict histone modifications to nucleosomes altered by transcription.


Assuntos
Histonas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Metilação , Modelos Biológicos , Modelos Moleculares , Mutação , Nucleossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
6.
Mol Cell Biol ; 29(24): 6413-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19822661

RESUMO

Posttranslational modifications to histones have been studied extensively, but the requirement for the residues within the tails for different stages of transcription is less clear. Using RNR3 as a model, we found that the residues within the N terminus of H3 are predominantly required for steps after transcription initiation and chromatin remodeling. Specifically, deleting as few as 20 amino acids, or substituting glutamines for lysines in the tail, greatly impaired K36 methylation by Set2. The mutations to the tail described here preserve the residues predicted to fill the active site of Set2, and the deletion mimics the recently described cleavage of the H3 tail that occurs during gene activation. Importantly, maintaining the charge of the unmodified tail by arginine substitutions preserves Set2 function in vivo. The H3 tail is dispensable for Set2 recruitment to genes but is required for the catalytic activity of Set2 in vitro. We propose that Set2 activity is controlled by novel intratail interactions which can be influenced by modifications and changes to the structure of the H3 tail to control the dynamics and localization of methylation during elongation.


Assuntos
Histonas , Lisina/metabolismo , Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Histonas/química , Histonas/genética , Histonas/metabolismo , Metilação , Metiltransferases/genética , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
7.
J Biol Chem ; 283(29): 20060-8, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18499678

RESUMO

Protein Arg methyltransferases function as coactivators of the tumor suppressor p53 to regulate gene expression. Peptidylarginine deiminase 4 (PAD4/PADI4) counteracts the functions of protein Arg methyltransferases in gene regulation by deimination and demethylimination. Here we show that the expression of a tumor suppressor gene, OKL38, is activated by the inhibition of PAD4 or the activation of p53 following DNA damage. Chromatin immunoprecipitation assays showed a dynamic change of p53 and PAD4 occupancy and histone Arg modifications at the OKL38 promoter during DNA damage, suggesting a direct role of PAD4 and p53 in the expression of OKL38. Furthermore, we found that OKL38 induces apoptosis through localization to mitochondria and induction of cytochrome c release. Together, our studies identify OKL38 as a novel p53 target gene that is regulated by PAD4 and plays a role in apoptosis.


Assuntos
Apoptose , Histonas/metabolismo , Proteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Reguladoras de Apoptose , Arginina/genética , Arginina/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Mitocôndrias/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Proteínas/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA