Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(3): 1848-1856, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31886659

RESUMO

Limitations of capacitive deionization (CDI) and future commercialization efforts are intrinsically bound to electrode stability. In this work, thermal treatments are explored to understand their ability to regenerate aged CDI electrodes. We demonstrate that a relatively low thermal treatment temperature of ∼500 °C can sufficiently recover the lost salt adsorption capacity of degraded electrodes. Furthermore, a systematic study of electrode replacement clarifies that the desalination ability loss and regeneration for a CDI cell are isolated to the aged anode, as expected. Characterizations of surface functionalities support that the acidic oxygen-containing functional groups formed in situ during cycling undergo thermal decomposition during treatment. The modified Donnan model quantitatively confirms that the surface charges originate from the formation/decomposition of functional groups. Accordingly, the lost pore volume and the increased resistance are recovered during thermal treatments, while the surface morphologies and pore structure of the electrodes are well-preserved. Therefore, thermal treatment can be applied practically to extend the lifetime of aged electrodes. This study also offers insights into strategies for minimizing electrode degradation or in situ regeneration such that the technology gains momentum for future commercialization.


Assuntos
Carbono , Purificação da Água , Adsorção , Eletrodos , Cloreto de Sódio
2.
Bull Environ Contam Toxicol ; 99(5): 595-600, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28913582

RESUMO

Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.


Assuntos
Glicina/análogos & derivados , Herbicidas/metabolismo , Typhaceae/metabolismo , Áreas Alagadas , Glicina/metabolismo , Herbicidas/análise , América do Norte , Rizoma/metabolismo , Glifosato
3.
Adv Sci (Weinh) ; 10(19): e2300502, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083231

RESUMO

The broad application of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing tools is hindered by challenges in the efficient delivery of its two components into specific cells and intracytoplasmic release. Herein, a novel copolymer for delivery of Cas9-mRNA/ single-guide RNA (Cas9-mRNA/sgRNA) in vitro and vivo, using carboxylesterase-responsive cationic triadic copolymeric nanoparticles targeted proprotein convertase subtilisin/kexin type 9 (PCSK9) for hyperlipidemia amelioration is reported. A dimethyl biguanide derivative is designed and synthesized to form cationic block, and copolymerization onto prepolymer with propyl methacrylate, to fabricate a triadic copolymer mPEG-b-P(Met/n-PMA). The copolymer can self-assemble with Cas9-mRNA/sgRNA, indicating the excellent potential of nanoparticles to form a delivery carrier. This vehicle can efficiently release RNA in response to the hepatocytes carboxylesterase for genome editing. It was demonstrated that the mPEG-b-P(Met/n-PMA)/Cas9 mRNA/sgRNA nanoparticles effectively accumulated in hepatocytes, lead to the inhibition of PCSK9, and lowered the levels of Low-density lipoprotein cholesterol and total cholesterol in mouse serum down 20% of nontreatment. Interestingly, the nanoparticles even enable multiple functions in the regulation of blood glucose and weight. This study establishes a novel method to achieve complex CRISPR components stable loading, safe delivery, and fixed-point release, which expand the application of CRISPR delivery systems.


Assuntos
Hiperlipidemias , Nanopartículas , Animais , Camundongos , Edição de Genes/métodos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Hiperlipidemias/terapia , Hiperlipidemias/genética , Fígado/metabolismo , RNA Mensageiro , Colesterol , Hidrolases de Éster Carboxílico/genética
4.
ACS Omega ; 7(42): 37867-37872, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312337

RESUMO

In the race to increase lithium-ion cell manufacturing, labor and energy costs quickly ascend to become chief concerns for building new facilities, as conventional electrode designs need significant resources during fabrication. Complicating this issue is an empirical trade-off between environmental friendliness and ethical sourcing. To circumvent this paradox, modified cell designs that employ foils and textiles can significantly change manufacturing considerations if their simple construction can be matched with competitive performance. In this work, we demonstrate one possible cell design for a lithium-ion device that utilizes a fabric and a foil for the cathode and the anode, respectively. For the anode, a prelithiated aluminum foil is chosen, as the room-temperature solubility range of the LiAl phase is well-suited to uptake and release lithium, all while reducing energy or cost-intensive production steps. The cathode is composed of activated carbon fiber textiles, which offer a scalable path to realize sustainability. With such benefits, this device design can potentially change the calculus for the mass production of energy storage devices.

5.
J Mater Chem B ; 9(20): 4134-4142, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33972981

RESUMO

Atherosclerosis (AS) is a major cause of cardiovascular diseases, but its effective theranostic measure remains challenging thus far. Macrophages contribute to AS progress in diverse ways such as producing cytokines and reactive oxygen species (ROS), foaming macrophages, and differentiating into pro-inflammatory macrophages. With the aim of constructing a facile and efficacious theranostic system for diagnosis and treatment of AS, a templated self-assembly approach was developed. This strategy involves using indole molecule (indocyanine green (ICG) or IR783) as a template to assemble with probucol (PB) to gain multifunctional nanoparticles (IPNPs or IRPNPs). IPNPs and IRPNPs both showed excellent physicochemical properties, which testified the generality of the indole molecular self-assembly strategy for PB delivery. Besides, the nanoparticles have superior pharmaceutical characteristics including preventing macrophages from differentiating, more efficiently internalizing in inflammatory macrophages, eliminating overproduced ROS, lowering the level of inflammation cytokines, and inhibiting foaming. More importantly, IPNPs displayed effective therapeutic effects in AS model mice when administered via intravenous (i.v.) route. In addition, IPNPs and IRPNPs accumulated more effectively than ICG and IR783 via i.v. injection in the lesion area, and the blood circulation time was extended beyond 24 h. More interestingly, we discovered that the fluorescence imaging ability of IR783 and IRPNPs was more excellent than ICG and IPNPs, respectively. Moreover, a long-term treatment with IPNPs or IRPNPs revealed an excellent safety profile in mice. Accordingly, this self-assembly strategy developed herein is a universal and promising way for the delivery of lipophilic drugs. This study also provides new insights into developing effective theranostic agents for AS.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aterosclerose/tratamento farmacológico , Verde de Indocianina/farmacologia , Nanopartículas/química , Probucol/química , Nanomedicina Teranóstica , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Aterosclerose/metabolismo , Células Cultivadas , Humanos , Verde de Indocianina/síntese química , Verde de Indocianina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica , Células RAW 264.7 , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
6.
ACS Appl Mater Interfaces ; 13(24): 27856-27867, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110146

RESUMO

Combining photodynamic therapy (PDT), chemodynamic therapy (CDT), and ferroptosis is a valuable means for an enhanced anticancer effect. However, traditional combination of PDT/CDT/ferroptosis faces several hurdles, including excess glutathione (GSH) neutralization and preparation complexity. In this work, a versatile multifunctional nanoparticle (HCNP) self-assembled from two porphyrin molecules, chlorin e6 and hemin, is developed. The as-constructed HCNPs exhibit a peroxidase-mimic catalytic activity, which can lead to the in situ generation of endogenous O2, thereby enhancing the efficacy of PDT. Furthermore, the generation of hydroxyl radicals (•OH) in the tumor environment in reaction to the high level of H2O2 and the simultaneous disruption of intracellular GSH endow the HCNPs with the capacity of enhanced CDT, resulting in a more effective therapeutic outcome in combination with PDT. More importantly, GSH depletion further leads to the inactivation of GSH peroxide 4 and induced ferroptosis. Both in vitro and in vivo results showed that the combination of PDT/CDT/ferroptosis realizes highest antitumor efficacy significantly under laser irradiation. Therefore, by integrating the superiorities of O2 and •OH generation capacity, GSH-depletion effect, and bioimaging into a single nanosystem, the HCNPs are a promising single therapeutic agent for tumor PDT/CDT/ferroptosis combination therapy.


Assuntos
Antineoplásicos/uso terapêutico , Hemina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Catálise , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Hemina/química , Hemina/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Radical Hidroxila/metabolismo , Luz , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/efeitos da radiação , Oxigênio/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/química , Porfirinas/efeitos da radiação
7.
ChemSusChem ; 13(5): 974-985, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31893571

RESUMO

Aluminum is an attractive anode material for lithium-ion batteries (LIBs) owing to its low cost, light weight, and high specific capacity. However, utilization of Al-based anodes is significantly limited by drastic capacity fading during cycling. Herein, a systematic study is performed to investigate the kinetics of electrochemical lithiation of Al thin films to understand the mechanisms governing the phase transformation, by using an operando light microscopy platform. Operando videos reveal that nuclei appear at random positions and expand to form quasi-circular patches that grow and merge until the phase transformation is complete. Based on this direct evidence, models of the lithiation processes in Al anodes are discussed and reaction-controlled kinetics are suggested. The growth rate of LiAl depends on the potential and increases considerably as higher overpotentials are approached. Lastly, improved cycling performance of Al-based anodes can be realized by two approaches: 1) by controlling the lithiation extent, the cycling life of Al thin film is extended from 5 cycles to 25 cycles; 2) the performance can be optimized by adjusting the kinetics. Together, this work offers a renewed promise for the commercialization of Al-based anodes in LIBs where the performance requirements are compatible with the proposed cycle life-extending strategies.

8.
ChemSusChem ; 13(22): 5910-5920, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33016010

RESUMO

Aluminum is well-known to possess attractive properties for possible use as an anode material in Li-ion batteries (LIBs), but effort is still needed to understand how and why it degrades. Herein, investigations of the delithiation and the re-lithiation processes in Al thin films using an established operando light microscopic platform are pursued. Operando videos highlight that the extraction of Li from the ß phase (LiAl) is accompanied by fracture and crack formation leading to the detachment of the α phase (Al) from the rest of the electrode. The evolution of mechanical stress in Al thin film electrodes is tracked and shows severe stress asymmetry as phase transformations progress. Combining with the observations from light and electron microscopy, the mechanical stress during dealloying can be explained by Li solubility with the ß phase, formation of cracks and of a highly porous Al nanostructure. Although the results pave a difficult path for utilization of the Al/LiAl/Al (α/ß/α) phase transformations in future LIBs, they also suggest excellent opportunities when structural changes can be prevented, which otherwise impact the stability of Al-based electrodes.

9.
ACS Sustain Chem Eng ; 5(12): 11346-11353, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29226036

RESUMO

Methane-producing bioelectrochemical systems (BESs) are a promising technology to convert renewable surplus electricity into the form of storable methane. One of the key challenges for this technology is the search for suitable cathode materials with improved biocompatibility and low cost. Here, we study heat-treated stainless steel felt (HSSF) for its performance as biocathode. The HSSF had superior electrocatalytic properties for hydrogen evolution compared to untreated stainless steel felt (SSF) and graphite felt (GF), leading to a faster start-up of the biocathodes. At cathode potentials of -1.3 and -1.1 V, the methane production rates for HSSF biocathodes were higher than the SSF, while its performance was similar to GF biocathodes at -1.1 V and lower than GF at -1.3 V. The HSSF biocathodes had a current-to-methane efficiency of 60.8% and energy efficiency of 21.9% at -1.3 V. HSSF is an alternative cathode material with similar performance compared to graphite felt, suited for application in methane-producing BESs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA