RESUMO
Urine retinol-binding protein 4 (RBP4) has recently been reported as a novel earlier biomarker of chronic kidney disease (CKD) which is a global public health problem with high morbidity and mortality. Accurate and rapid detection of urine RBP4 is essential for early monitor of impaired kidney function and prevention of CKD progression. In the present study, we developed a time-resolved fluorescence immunochromatographic test strip (TRFIS) for the quantitative and rapid detection of urine RBP4. This TRFIS possessed excellent linearity ranging from 0.024 to 12.50 ng/mL for the detection of urine RBP4, and displayed a good linearity (Y = 239,581 × X + 617,238, R2 = 0.9902), with the lowest visual detection limit of 0.049 ng/mL. This TRFIS allows for quantitative detection of urine RBP4 within 15 min and shows high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 8%, respectively. Additionally, this TRFIS was applied to detect RBP4 in the urine samples from healthy donors and patients with CKD, and the results of TRFIS could efficiently discern the patients with CKD from the healthy donors. The developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range, and is suitable for rapid and quantitative determination of urine RBP4.
Assuntos
Cromatografia de Afinidade , Insuficiência Renal Crônica , Proteínas Plasmáticas de Ligação ao Retinol , Humanos , Proteínas Plasmáticas de Ligação ao Retinol/urina , Cromatografia de Afinidade/métodos , Insuficiência Renal Crônica/urina , Insuficiência Renal Crônica/diagnóstico , Limite de Detecção , Fitas Reagentes , Biomarcadores/urina , Imunoensaio/métodosRESUMO
The roles of cytokines and chemokines in HIV-associated cryptococcal meningitis (HCM) and HIV-associated tuberculous meningitis (HTBM) are debatable. In sum, 34 HIV-infected patients without meningitis, 44 HCM patients and 27 HTBM patients were enrolled for study. The concentrations of 22 cytokines/chemokines in cerebrospinal fluid (CSF) were assayed at admission. Principal component analysis (PCA), Pearson's and logistic regression analyses were used to assess the role of cytokines/chemokines in HCM and HTBM. We found the levels of T helper (Th)17, Th1 [interleukin (IL)-12p40, interferon (IFN)-γ, tumor necrosis factor (TNF)-α and TNF-ß and Th2 (IL-2/4/5/6/10)] cytokines were elevated in patients with meningitis compared with those in HIV-infected patients without central nervous system (CNS) infection. Furthermore, the IL-1Ra, IL-12p40, IL-17α and monocyte chemotactic protein-1 (MCP-1) levels were higher in HCM patients, while the IFN-γ, regulated upon activation, normal T cell expressed and secreted (RANTES) and interferon-inducible protein-10 (IP)-10 levels were higher in HTBM patients. Elevated CSF concentrations of IL-17a, TNF-ß, IL-5, IL-12p40 and IL-1Rα were closely related to meningitis, but elevated IP-10, MCP-1, RANTES and IFN-γ levels and CSF white blood cells (WBCs) were protective factors against HCM. Our study suggested that HIV-infected patients with low CSF WBCs have a high risk of HCM. Th1, Th2 and Th17 cytokines/chemokines mediate differences in the pathogenesis of HCM and TBM. Overexpressed proinflammatory MCP-1, RANTES, IFN-γ and IP-10 in CSF are protective factors against HCM but not HTBM.
Assuntos
Citocinas , Infecções por HIV , HIV-1/imunologia , Meningite Criptocócica , Tuberculose Meníngea , Adulto , Citocinas/líquido cefalorraquidiano , Citocinas/imunologia , Feminino , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/complicações , Infecções por HIV/imunologia , Humanos , Masculino , Meningite Criptocócica/líquido cefalorraquidiano , Meningite Criptocócica/etiologia , Meningite Criptocócica/imunologia , Pessoa de Meia-Idade , Tuberculose Meníngea/líquido cefalorraquidiano , Tuberculose Meníngea/etiologia , Tuberculose Meníngea/imunologiaRESUMO
MicroRNAs (miRNAs) are important host molecules involved in human immunodeficiency virus type 1 (HIV-1) infection. Antiretroviral therapy (ART) can affect the miRNA expression profile, but differentially expressed miRNAs still remain to be identified. In this study, we used gene chips to analyze miRNA expression profiles in peripheral blood mononuclear cells from ART-naive HIV-1 patients and those receiving ART, as well as from uninfected individuals. We measured differences in miRNA expression by quantitative polymerase chain reaction (qPCR) in an expanded sample. We found significant differences in the expression of has-miR-191-5p among the three groups (P < 0.05). Furthermore, we showed that hsa-miR-191-5p has an inhibitory effect on HIV-1 replication in cell models in vitro. We identified CCR1 and NUP50 as target molecules of hsa-miR-191-5p and found that hsa-miR-191-5p inhibits the expression of CCR1 and NUP50. Knockdown of NUP50 resulted in significant inhibition of HIV-1 replication. In summary, our research shows that hsa-miR-191-5p expression is reduced in HIV-1-infected patients and acts an inhibitor of HIV-1 infection via a mechanism that may involve targeted repression of NUP50 expression.
Assuntos
Regulação da Expressão Gênica/genética , HIV-1/metabolismo , MicroRNAs/genética , Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Proteínas Nucleares/biossíntese , Receptores CCR1/biossíntese , Adulto , Linhagem Celular , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase em Tempo Real , Replicação Viral/genética , Adulto JovemRESUMO
BACKGROUND: Sleep loss is closely related to the onset and development of depression, and the mechanisms involved may include impaired synaptic plasticity. Considering the important role of glutamate α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) in synaptic plasticity as well as depression, we introduce LT-102, a novel AMPARs potentiator, to evaluate the potential of LT-102 in treating sleep deprivation-induced depression-like behaviors. METHODS: We conducted a comprehensive behavioral assessment to evaluate the effects of LT-102 on depression-like symptoms in male C57BL/6J mice. This assessment included the open field test to measure general locomotor activity and anxiety-like behavior, the forced swimming test and tail suspension test to assess despair behaviors indicative of depressive states, and the sucrose preference test to quantify anhedonia, a core symptom of depression. Furthermore, to explore the impact of LT-102 on synaptic plasticity, we utilized a combination of Western blot analysis to detect protein expression levels, Golgi-Cox staining to visualize neuronal morphology, and immunofluorescence to examine the localization of synaptic proteins. Additionally, we utilized primary cortical neurons to delineate the signaling pathway modulated by LT-102. RESULTS: Treatment with LT-102 significantly reduced depression-like behaviors associated with sleep deprivation. Quantitative Western blot (WB) analysis revealed a significant increase in GluA1 phosphorylation in the prefrontal cortex (PFC), triggering the Ca2+/calmodulin-dependent protein kinase II/cAMP response element-binding protein/brain-derived neurotrophic factor (CaMKII/CREB/BDNF) and forkhead box protein P2/postsynaptic density protein 95 (FoxP2/PSD95) signaling pathways. Immunofluorescence imaging confirmed that LT-102 treatment increased spine density and co-labeling of PSD95 and vesicular glutamate transporter 1 (VGLUT1) in the PFC, reversing the reductions typically observed following sleep deprivation. Golgi staining further validated these results, showing a substantial increase in neuronal dendritic spine density in sleep-deprived mice treated with LT-102. Mechanistically, application of LT-102 to primary cortical neurons, resulted in elevated levels of phosphorylated AKT (p-AKT) and phosphorylated glycogen synthase kinase-3 beta (p-GSK3ß), key downstream molecules in the BDNF signaling pathway, which in turn upregulated FoxP2 and PSD95 expression. LIMITATIONS: In our study, we chose to exclusively use male mice to eliminate potential influences of the estrous cycle on behavior and physiology. As there is no widely accepted positive drug control for sleep deprivation studies, we did not include one in our research. CONCLUSION: Our results suggest that LT-102 is a promising therapeutic agent for counteracting depression-like behaviors and synaptic plasticity deficits induced by sleep deprivation, primarily through the activation of CaMKII/CREB/BDNF and AKT/GSK3ß/FoxP2/PSD95 signaling pathways.
Assuntos
Depressão , Plasticidade Neuronal , Córtex Pré-Frontal , Receptores de AMPA , Privação do Sono , Animais , Masculino , Camundongos , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de AMPA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Privação do Sono/complicações , Privação do Sono/fisiopatologiaRESUMO
Background: Elevated platelet count (PLTc) is associated with first-episode schizophrenia and adverse outcomes in individuals with precursory psychosis. However, the impact of antipsychotic medications on PLTc and its association with symptom improvement remain unclear. Aims: We aimed to investigate changes in PLTc levels following antipsychotic treatment and assess whether PLTc can predict antipsychotic responses and metabolic changes after accounting for other related variables. Methods: A total of 2985 patients with schizophrenia were randomised into seven groups. Each group received one of seven antipsychotic treatments and was assessed at 2, 4 and 6 weeks. Clinical symptoms were evaluated using the positive and negative syndrome scale (PANSS). Additionally, we measured blood cell counts and metabolic parameters, such as blood lipids. Repeated measures analysis of variance was used to examine the effect of antipsychotics on PLTc changes, while structural equation modelling was used to assess the predictive value of PLTc on PANSS changes. Results: PLTc significantly increased in patients treated with aripiprazole (F=6.00, p=0.003), ziprasidone (F=7.10, p<0.001) and haloperidol (F=3.59, p=0.029). It exhibited a positive association with white blood cell count and metabolic indicators. Higher baseline PLTc was observed in non-responders, particularly in those defined by the PANSS-negative subscale. In the structural equation model, PLTc, white blood cell count and a latent metabolic variable predicted the rate of change in the PANSS-negative subscale scores. Moreover, higher baseline PLTc was observed in individuals with less metabolic change, although this association was no longer significant after accounting for baseline metabolic values. Conclusions: Platelet parameters, specifically PLTc, are influenced by antipsychotic treatment and could potentially elevate the risk of venous thromboembolism in patients with schizophrenia. Elevated PLTc levels and associated factors may impede symptom improvement by promoting inflammation. Given PLTc's easy measurement and clinical relevance, it warrants increased attention from psychiatrists. Trial registration number: ChiCTR-TRC-10000934.
RESUMO
Major depressive disorder is a common psychiatric disorder, with â¼30% of patients suffering from treatment-resistant depression. Based on preclinical studies on ketamine, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) activation may be a promising therapeutic approach. In this study, we synthesized a series of novel 3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide analogs and analyzed their potential as AMPAR potentiators. Compounds 5aa and 7k exhibited high potentiation with little agonist activity in a high-throughput screen using a calcium influx assay in cultured hippocampal primary neurons. In rats, compound 7k had better pharmacokinetic properties and oral bioavailability (F = 67.19%); it also exhibited an acceptable safety profile in vital internal organs based on hematoxylin and eosin staining. We found that 7k produced a rapid antidepressant-like effect in chronic restraint stress-induced mice 1 h after intraperitoneal administration. Our study presented a series of novel AMPAR potentiators and identified 7k as a promising drug-like candidate against major depressive disorders.
Assuntos
Transtorno Depressivo Maior , Ketamina , Ratos , Camundongos , Animais , Receptores de AMPA , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/farmacologia , Ketamina/farmacologia , NeurôniosRESUMO
Viral DNA integrated in host cells is a major barrier to completely curing HIV-1. However, genome editing using the recently developed technique of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has the potential to eradicate HIV-1. The present study aimed to use a lentiviral vector-based CRISPR/Cas9 system combined with dual-small/single guide RNAs (sgRNAs) to attack HIV-1 DNA in the latency reactivation model J-Lat 10.6 cell line and to assess off-target effects using whole-genome sequencing (WGS). We designed 12 sgRNAs targeting HIV-1 DNA, and selected high-efficiency sgRNAs for further pairwise combinations after a preliminary evaluation of the editing efficiency. Three combinations of dual-sgRNAs/Cas9 with high editing efficiency were screened successfully from multiple combinations. Among these combinations, the incidences of insertions and deletions in the sgRNA-targeted regions reached 76% and above, and no credible off-target sites were detected using WGS. The results provided comprehensive basic experimental evidence and methodological recommendations for future personalized HIV-1 treatment using CRISPR/Cas9 genome editing technology.
RESUMO
[This corrects the article DOI: 10.3389/fonc.2020.538845.].
RESUMO
Meningioma is the most common tumor of the central nervous system, most of which is benign. Even after complete resection, a high rate of recurrence of meningioma is observed. From in-depth study of its pathogenesis, it has been found that a number of chromosomal variations and abnormal molecular signals are closely related to the occurrence and development of malignancy in meningioma, which may provide the theoretical basis and potential direction for accurate and targeted treatment. We have reviewed advances in chromosomal variations and molecular mechanisms involved in the progression of meningioma, and have highlighted the association with malignant biological behavior including cell proliferation, angiogenesis, increased invasiveness, and inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized and discussed.