Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Trends Biochem Sci ; 45(4): 347-364, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32044127

RESUMO

Autophagy is an evolutionarily conserved process whereby damaged and redundant components of the cell are degraded in structures called autophagolysosomes. Currently, three main types of autophagy are recognized: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). However, we still know little about some specific types of autophagy that are linked to various intracellular compartments and their roles in the physiology of the whole organism and connections to various diseases. Here, we aim to shed light on the latest insights on and mechanisms of several selective forms of autophagy.


Assuntos
Autofagia , Animais , Humanos , Lisossomos/química , Lisossomos/metabolismo , Lisossomos/patologia
2.
J Biomed Sci ; 31(1): 31, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509545

RESUMO

BACKGROUND: The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT: PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION: PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.


Assuntos
Atresia Folicular , Ovário , Animais , Feminino , Humanos , Ovário/fisiologia , Atresia Folicular/fisiologia , Apoptose/genética , Morte Celular/fisiologia , Oócitos/metabolismo , Mamíferos
3.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142688
4.
Biochem Biophys Res Commun ; 633: 55-58, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36344162

RESUMO

It is known that all living organisms are mortal. For many decades, the main interest of researchers has been focused on the investigation of proliferation, differentiation and other fundamental cellular processes, completely ignoring the understanding of the mechanisms of cell elimination. Since the 60s-70s of the last century, a systematic study of cell death began, which is currently one of the most rapidly developing areas of biomedicine. Since this field of research is very wide, in these short notes we tried to discuss the hottest, but not all, topics that are of interest to many of our colleagues.


Assuntos
Apoptose , Apoptose/fisiologia , Morte Celular , Diferenciação Celular
5.
Genes Dev ; 28(24): 2726-38, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512560

RESUMO

The WD40 domain-containing protein WRAP53ß (WD40 encoding RNA antisense to p53; also referred to as WDR79/TCAB1) controls trafficking of splicing factors and the telomerase enzyme to Cajal bodies, and its functional loss has been linked to carcinogenesis, premature aging, and neurodegeneration. Here, we identify WRAP53ß as an essential regulator of DNA double-strand break (DSB) repair. WRAP53ß rapidly localizes to DSBs in an ATM-, H2AX-, and MDC1-dependent manner. We show that WRAP53ß targets the E3 ligase RNF8 to DNA lesions by facilitating the interaction between RNF8 and its upstream partner, MDC1, in response to DNA damage. Simultaneous binding of MDC1 and RNF8 to the highly conserved WD40 scaffold domain of WRAP53ß facilitates their interaction and accumulation of RNF8 at DSBs. In this manner, WRAP53ß controls proper ubiquitylation at DNA damage sites and the downstream assembly of 53BP1, BRCA1, and RAD51. Furthermore, we reveal that knockdown of WRAP53ß impairs DSB repair by both homologous recombination (HR) and nonhomologous end-joining (NHEJ), causes accumulation of spontaneous DNA breaks, and delays recovery from radiation-induced cell cycle arrest. Our findings establish WRAP53ß as a novel regulator of DSB repair by providing a scaffold for DNA repair factors.


Assuntos
Reparo do DNA/fisiologia , Telomerase/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Telomerase/genética , Transativadores/metabolismo , Ubiquitina-Proteína Ligases
6.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409093

RESUMO

Mitotic catastrophe is a defensive mechanism that promotes elimination of cells with aberrant mitosis by triggering the cell-death pathways and/or cellular senescence. Nowadays, it is known that apoptosis, autophagic cell death, and necrosis could be consequences of mitotic catastrophe. Here, we demonstrate the ability of a DNA-damaging agent, doxorubicin, at 600 nM concentration to stimulate mitotic catastrophe. We observe that the inhibition of caspase activity leads to accumulation of cells with mitotic catastrophe hallmarks in which RIP1-dependent necroptotic cell death is triggered. The suppression of autophagy by a chemical inhibitor or ATG13 knockout upregulates RIP1 phosphorylation and promotes necroptotic cell death. Thus, in certain conditions mitotic catastrophe, in addition to apoptosis and autophagy, can precede necroptosis.


Assuntos
Mitose , Necroptose , Apoptose/fisiologia , Morte Celular , Humanos , Necrose
7.
Cell Mol Life Sci ; 77(6): 1197-1207, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31392350

RESUMO

The majority of anticancer drugs are DNA-damaging agents, and whether or not they may directly target mitochondria remains unclear. In addition, tumors such as neuroblastoma exhibit addiction to glutamine in spite of it being a nonessential amino acid. Our aim was to evaluate the direct effect of widely used anticancer drugs on mitochondrial activity in combination with glutamine withdrawal, and possible apoptotic effects of such interaction. Our results revealed that etoposide inhibits mitochondrial respiratory chain Complex I causing the leakage of electrons and the superoxide radical formation. However, it was not sufficient to induce apoptosis, and apoptotic manifestation was detectable only alongside the withdrawal of glutamine, a precursor for antioxidant glutathione. Thus, the simultaneous depletion of glutathione and destabilization of mitochondria by ROS can compromise the barrier properties of the mitochondrial membrane, leading to cytochrome c release and the activation of the mitochondrial apoptotic pathway. Thus, the depletion of antioxidants or the inhibition of the pathways responsible for cellular antioxidant response can enhance mitochondrial targeting and strengthen antitumor therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Etoposídeo/farmacologia , Glutamina/metabolismo , Neuroblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
8.
Biochim Biophys Acta Rev Cancer ; 1867(1): 29-41, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27871964

RESUMO

Cancer is the second leading cause of death worldwide and the morbidity is growing in developed countries. According to WHO, >14 million people per year are diagnosed with cancer and about 8 million die. Anti-cancer strategy includes chemo-, immune- and radiotherapy or their combination. Unfortunately, these widely used strategies often have insufficient efficacy and significant toxic effects on healthy cells. Consequently, the improvement of treatment approaches is an important goal. One of promising schemes to enhance the effect of therapy is the restriction of calorie intake or some nutrients. The combination of caloric restriction or its chemical mimetics along with anti-cancer drugs may suppress growth of tumor cells and enhance death of cancer cells. That will allow the dose of therapeutic drugs to be decreased and their toxic effects to be reduced. Here the possibility of using this combinatory therapy as well as the molecular mechanisms underlying this approach will be discussed.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/dietoterapia , Neoplasias/tratamento farmacológico , Animais , Restrição Calórica/métodos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos
9.
Biol Chem ; 400(2): 161-170, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29924729

RESUMO

Mitophagy, the selective degradation of mitochondria via the autophagic pathway, is a vital mechanism of mitochondrial quality control in cells. The removal of malfunctioning or damaged mitochondria is essential for normal cellular physiology and tissue development. Stimulation of mitochondrial permeabilization and release of proapoptotic factors from the intermembrane space is an essential step in triggering the mitochondrial pathway of cell death. In this study, we analyzed the extent to which mitophagy interferes with cell death, attenuating the efficiency of cancer therapy. We show that stimulation of mitophagy suppressed cisplatin-induced apoptosis, while mitophagy inhibition stimulates apoptosis and autophagy. Suppression of mitophagy involved production of reactive oxygen species, and the fate of cell was dependent on the interplay between endoplasmic reticulum stress and autophagy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Mitofagia , Células HCT116 , Humanos , Espécies Reativas de Oxigênio/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 498-506, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27993669

RESUMO

Tumor cells dependence on glutamine offers a rationale for their elimination via targeting of glutamine metabolism. The aim of this work was to investigate how glutamine deprivation affects the cellular response to conventionally used anticancer drugs. To answer this question, neuroblastoma cells were pre-incubated in a glutamine-free medium and treated with cisplatin or etoposide. Obtained results revealed that glutamine withdrawal affected cellular response to therapeutic drugs in a different manner. Glutamine deprivation suppressed etoposide-induced, but markedly stimulated cisplatin-induced apoptosis. Suppression of etoposide-induced cell death correlated with a downregulation of p53 expression, which, among other functions, regulates the expression of death receptor 5, one of the activators of caspase-8. In contrast, stimulation of cisplatin-induced cell death involved reactive oxygen species-mediated downregulation of FLIP-S, an inhibitor of caspase-8. As a result, the activity of caspase-8 was stimulated causing cleavage of the pro-apoptotic protein Bid, which is involved in the permeabilization of the outer mitochondrial membrane and the release of pro-apoptotic factors, such as cytochrome c from mitochondria. Thus, suppression of glutamine metabolism can sensitize tumor cells to treatment and could be utilized for anti-cancer therapy. However, it should be done cautiously, since adverse effects may occur when combined with an inappropriate therapeutic drug.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glutamina/deficiência , Neurônios/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Meios de Cultura/química , Citocromos c/metabolismo , Etoposídeo/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Biochem Biophys Res Commun ; 499(4): 822-828, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29621545

RESUMO

Caspase-2 has been implicated in diverse cellular processes, and the identification of factors with which it interacts has steadily increased. In the present study, we report a direct interaction between caspase-2 and factor associated with neutral sphingomyelinase activation (FAN) using yeast two-hybrid screening and co-immunoprecipitation. Further, stable suppression of caspase-2 expression in HEK293T and HeLa cells enabled a systematic investigation of putative novel enzyme functionalities, especially with respect to ceramide production, cell migration, IL-6 production and vesicular homeostasis, all of which have been previously reported to be associated with FAN. Lipidomics excluded the involvement of caspase-2 in the generation of ceramide species, but caspase-2-dependent deregulation of IL-6 release, vesicular size and delayed cell relocation supported an association between caspase-2 and FAN. Collectively, these data identify a novel caspase-2-interacting factor, FAN, and expand the role for the enzyme in seemingly non-apoptotic cellular mechanisms.


Assuntos
Caspase 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Caspase 2/deficiência , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ceramidas/farmacologia , Células HEK293 , Humanos , Interleucina-6/metabolismo , Ligação Proteica/efeitos dos fármacos , Reprodutibilidade dos Testes , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo
12.
Blood ; 128(23): 2655-2665, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27742710

RESUMO

The intercellular crosstalk between hematological malignancies and the tumor microenvironment is mediated by cell-to-cell interactions and soluble factors. One component of the secretome that is gaining increasing attention is the extracellular vesicles and, in particular, the exosomes. Apart from the role as vectors of molecular information, exosomes have been shown to possess intrinsic biological activity. In this study, we found that caspase-3 is activated in L88 bone marrow stroma cell-derived exosomes and identified 1 of the substrates to be the antiapoptotic protein Bcl-xL. The cleaved Bcl-xL is found in a panel of normal and cancer cell-derived exosomes and is localized on the outer leaflet of the exosomal membrane. Incubation of the exosomes with a caspase-3 inhibitor or the pan-caspase inhibitor prevents the cleavage of Bcl-xL. Importantly, MCF-7 cell-derived exosomes that are caspase-3-deficient are enriched in full-length Bcl-xL, whereas ectopic expression of caspase-3 restores the cleavage of Bcl-xL. Chemical inhibition of Bcl-xL with ABT737 or molecular inhibition by using the D61A and D76A Bcl-xL mutant leads to a significant decrease in the uptake of exosomes by hematopoietic malignant cells. These data indicate that the cleaved Bcl-xL is required for the uptake of exosomes by myeloma and lymphoma cells, leading to their increased proliferation. In summary, we demonstrate for the first time that Bcl-xL is an exosomal caspase-3 substrate and that this processing is required for the uptake of exosomes by recipient cells.


Assuntos
Caspase 3/metabolismo , Exossomos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Linfoma/metabolismo , Mieloma Múltiplo/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína bcl-X/metabolismo , Substituição de Aminoácidos , Caspase 3/genética , Exossomos/genética , Exossomos/patologia , Feminino , Humanos , Células Jurkat , Linfoma/genética , Linfoma/patologia , Células MCF-7 , Masculino , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mutação de Sentido Incorreto , Células Estromais/metabolismo , Células Estromais/patologia , Proteína bcl-X/genética
13.
Biochim Biophys Acta Gen Subj ; 1862(3): 557-566, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29203282

RESUMO

BACKGROUND: The development of approaches that increase therapeutic effects of anti-cancer drugs is one of the most important tasks of oncology. Caloric restriction in vivo or serum deprivation (SD) in vitro has been shown to be an effective tool for sensitizing cancer cells to chemotherapeutic drugs. However, the detailed mechanisms underlying the enhancement of apoptosis in cancer cells by SD remain to be elucidated. METHODS: Flow cytometry, caspase activity assay and western blotting were used for cell death rate evaluation. Western blotting, gel-filtration, siRNA approach and qRT-PCR were used to elucidate the mechanism underlying cell death potentiation upon SD. RESULTS: We demonstrated that SD sensitizes cancer cells to treatment with chemotherapeutic agent cisplatin. This effect is independent on activation of caspases-2 and -8, apical caspases triggering apoptosis in response to genotoxic stress. SD potentiates cell death via downregulation of the anti-apoptotic protein Mcl-1. In fact, SD reduces the Mcl-1 mRNA level, which consequently decreases the Mcl-1 protein level and renders cells more susceptible to apoptosis induction via the formation of apoptosome. CONCLUSIONS: Mcl-1 protein is an important regulator of sensitivity of cancer cells to apoptotic stimuli upon SD. GENERAL SIGNIFICANCE: This study identifies Mcl-1 as a new target for the sensitization of human cancer cells to cell death by SD, which is of great significance for the development of efficient anti-cancer therapies.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Proteínas de Neoplasias/biossíntese , Apoptose/fisiologia , Apoptossomas/fisiologia , Caspase 2/fisiologia , Caspase 8/fisiologia , Linhagem Celular Tumoral , Cisteína Endopeptidases/fisiologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HeLa , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/fisiologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética
14.
Biochim Biophys Acta ; 1863(8): 2065-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27140478

RESUMO

Mitochondria play a pivotal role in apoptosis: permeabilization of the outer mitochondrial membrane and the release of pro-apoptotic proteins from the intermembrane space of mitochondria are regarded as the key event in apoptosis induction. Here we demonstrate how non-toxic doses of the mitochondrial Complex II inhibitor thenoyltrifluoroacetone (TTFA), which specifically inhibits the ubiquinone-binding site of succinate dehydrogenase (SDH), synergistically stimulated cell death, induced by harmless doses of cisplatin in a panel of chemoresistant neuroblastoma cell lines. Apoptotic cell death was confirmed by cytochrome c release from the mitochondria, cleavage of poly ADP-ribose polymerase, processing of caspase-3, which is an important executive enzyme in apoptosis, and caspase-3-like activity. Methyl malonate, an inhibitor of the SDHA subunit partially reversed apoptosis stimulated by TTFA in SK-N-BE(2) neuroblastoma cells (NB), indicating that sensitization requires oxidation of succinate. In contrast, in IMR-32 NB cells, the same concentrations of TTFA markedly suppressed cisplatin-induced apoptosis. Comparison of oxygen consumption in cisplatin-resistant SK-N-BE(2) and cisplatin-sensitive IMR-32 cells clearly demonstrated impaired Complex II activity in IMR-32 cells. We also found that in SK-N-BE(2) cells co-treatment with cisplatin and TTFA markedly stimulated formation of reactive oxygen species (ROS), whereas in IMR cells, cisplatin-mediated ROS production was attenuated by TTFA, which explains apoptosis suppression in these cells. Thus, functionally active SDH is a prerequisite for the ROS-mediated sensitization to treatment by TTFA.


Assuntos
Antineoplásicos/farmacologia , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Ácido Succínico/metabolismo , Tenoiltrifluoracetona/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Mitocôndrias/enzimologia , Neuroblastoma/patologia , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
15.
Biochem Biophys Res Commun ; 482(3): 432-439, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212727

RESUMO

Mitophagy, the selective degradation of mitochondria via the autophagic pathway, is a vital mechanism of mitochondrial quality control in cells. Mitophagy is responsible for the removal of malfunctioning or damaged mitochondria, which is essential for normal cellular physiology and tissue development. Pathways involved in the regulation of mitophagy, tumorigenesis, and cell death are overlapping in many cases and may be triggered by common upstream signals, which converge at the mitochondria. The failure to properly modulate mitochondrial turnover in response to oncogenic stresses can either stimulate or suppress tumorigenesis. Thus, the analysis of crosstalk among the processes of mitophagy, cell death and tumorigenesis is important for the identification of targets responsible for the stimulation of cell death and selective elimination of cancer cells. In the present review, we analyze the mechanisms of mitophagy regulation, the pathways underlying the utilization of damaged mitochondria, and how intervention with mitophagy can affect tumor cell resistance to treatment.


Assuntos
Mitofagia/fisiologia , Neoplasias/etiologia , Animais , Autofagia/fisiologia , Carcinogênese , Hipóxia Celular/fisiologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/terapia , Estresse Oxidativo
16.
Drug Resist Updat ; 24: 1-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26830311

RESUMO

An increased tendency of genomic alterations during the life cycle of cells leads to genomic instability, which is a major driving force for tumorigenesis. A considerable fraction of tumor cells are tetraploid or aneuploid, which renders them intrinsically susceptible to mitotic aberrations, and hence, are particularly sensitive to the induction of mitotic catastrophe. Resistance to cell death is also closely linked to genomic instability, as it enables malignant cells to expand even in a stressful environment. Currently it is known that cells can die via multiple mechanisms. Mitotic catastrophe represents a step preceding apoptosis or necrosis, depending on the expression and/or proper function of several proteins. Mitotic catastrophe was proposed to be an onco-suppressive mechanism and the evasion of mitotic catastrophe constitutes one of the gateways to cancer development. Thus, stimulation of mitotic catastrophe appears to be a promising strategy in cancer treatment. Indeed, several chemotherapeutic drugs are currently used at concentrations that induce apoptosis irrespective of the cell cycle phase, yet are very efficient at triggering mitotic catastrophe at lower doses, significantly limiting side effects. In the present review we summarize current data concerning the role of mitotic catastrophe in cancer drug resistance and discuss novel strategies to break this link.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Instabilidade Genômica/efeitos dos fármacos , Mutação , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos
17.
Annu Rev Pharmacol Toxicol ; 53: 275-97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23072380

RESUMO

Research on autophagy and its effects on cell metabolism and physiology has increased dramatically during recent years. Multiple forms of autophagy have been characterized, and many of the genes involved in the regulation of this process have been identified. The importance of autophagy for embryonic development and maintenance of tissue homeostasis in the adult organism has been demonstrated convincingly, and several human diseases have been linked to deficiencies in autophagy. Most often, autophagy serves as a protective mechanism, but persistent activation of autophagy can result in cell death. This is true for many toxic agents. In fact, there are ample examples of cross talk between autophagy and other modes of cell death after exposure to toxicants. However, the relative contribution of autophagy to the overall toxicity of these compounds is not always clear, and further research is needed to clarify the toxicological significance of this process.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Substâncias Perigosas/toxicidade , Animais , Autofagia/genética , Morte Celular/genética , Homeostase/efeitos dos fármacos , Humanos
18.
Biol Chem ; 397(7): 661-70, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854291

RESUMO

Cardiac glycosides (CGs) or cardiotonic steroids, which constitute a group of naturally occurring compounds with a steroid-like structure, can act on Na+/K+-ATPase as a receptor and activate intracellular signaling messengers leading to a variety of cellular responses. Epidemiological studies have revealed that CGs, used for the treatment of cardiac disorders, may also be beneficial as anti-cancer agents. CGs, acting in combination with other chemotherapeutic agents, may significantly alter their efficiency in relation to cancer cell elimination, causing both sensitization and an increase in cancer cell death, and in some cases resistance to chemotherapy. Here we show the ability of CGs to modulate apoptotic response to conventionally used anti-cancer drugs. In combination with etoposide, CGs digoxin may enhance cytotoxic potential, thereby allowing the chemotherapeutic dose to be decreased and minimizing toxicity and adverse reactions. Mechanisms behind this event are discussed.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glicosídeos Cardíacos/farmacologia , Cisplatino/farmacologia , Etoposídeo/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Células HCT116 , Humanos
19.
Cell Mol Life Sci ; 72(3): 505-517, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25323133

RESUMO

Programmed cell death plays a central role in the regulation of homeostasis and development of multicellular organisms. Deregulation of programmed cell death is connected to a number of disorders, including cancer and autoimmune diseases. Initiation of cell death occurs in the multiprotein complexes or high molecular weight platforms. Composition, structure, and molecular interactions within these platforms influence the cellular decision toward life or death and, therefore, define the induction of a particular cell death program. Here, we discuss in detail the key cell-death complexes-including DISC, complex II, and TNFRI complex I/II, and the necrosome, RIPoptosome, apoptosome, and PIDDosome-that control apoptosis or necroptosis pathways as well as their regulation. The possibility of their pharmacological targeting leading to the development of new strategies of interference with cell death programs via control of the high molecular weight platforms will be discussed.


Assuntos
Morte Celular/fisiologia , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Necrose/fisiopatologia , Transdução de Sinais/fisiologia , Apoptossomas/metabolismo , Caspase 2/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo
20.
Cell Mol Life Sci ; 72(23): 4593-612, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26346492

RESUMO

Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Núcleo Celular/metabolismo , Animais , Caspases/genética , Núcleo Celular/genética , Núcleo Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Fragmentação do DNA , Genes p53 , Humanos , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Leucemia Promielocítica Aguda/genética , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA