Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Res Rev ; 43(5): 1778-1808, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183170

RESUMO

The antitumor efficacy of Chinese herbal medicines has been widely recognized. Leading compounds such as sterols, glycosides, flavonoids, alkaloids, terpenoids, phenylpropanoids, and polyketides constitute their complex active components. The antitumor monomers derived from Chinese medicine possess an attractive anticancer activity. However, their use was limited by low bioavailability, significant toxicity, and side effects, hindering their clinical applications. Recently, new chemical entities have been designed and synthesized by combining natural drugs with other small drug molecules or active moieties to improve the antitumor activity and selectivity, and reduce side effects. Such a novel conjugated drug that can interact with several vital biological targets in cells may have a more significant or synergistic anticancer activity than a single-molecule drug. In addition, antitumor conjugates could be obtained by combining pharmacophores containing two or more known drugs or leading compounds. Based on these studies, the new drug research and development could be greatly shortened. This study reviews the research progress of conjugates with antitumor activity based on Chinese herbal medicine. It is expected to serve as a valuable reference to antitumor drug research and clinical application of traditional Chinese medicine.


Assuntos
Alcaloides , Antineoplásicos , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/efeitos adversos , Antineoplásicos/farmacologia , Flavonoides
2.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176043

RESUMO

Doxorubicin is one of the most widely used antitumor drugs and is currently produced via the chemical conversion method, which suffers from high production costs, complex product separation processes, and serious environmental pollution. Biocatalysis is considered a more efficient and environment-friendly method for drug production. The cytochrome daunorubicin C-14 hydroxylase (DoxA) is the essential enzyme catalyzing the conversion of daunorubicin to doxorubicin. Herein, the DoxA from Streptomyces peucetius subsp. caesius ATCC 27952 was expressed in Escherichia coli, and the rational design strategy was further applied to improve the enzyme activity. Eight amino acid residues were identified as the key sites via molecular docking. Using a constructed screening library, we obtained the mutant DoxA(P88Y) with a more rational protein conformation, and a 56% increase in bioconversion efficiency was achieved by the mutant compared to the wild-type DoxA. Molecular dynamics simulation was applied to understand the relationship between the enzyme's structural property and its substrate-binding efficiency. It was demonstrated that the mutant DoxA(P88Y) formed a new hydrophobic interaction with the substrate daunorubicin, which might have enhanced the binding stability and thus improved the catalytic activity. Our work lays a foundation for further exploration of DoxA and facilitates the industrial process of bio-production of doxorubicin.


Assuntos
Sistema Enzimático do Citocromo P-450 , Daunorrubicina , Daunorrubicina/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Doxorrubicina/química , Conformação Proteica
3.
Appl Microbiol Biotechnol ; 106(2): 523-534, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921329

RESUMO

Ganoderic acids (GAs), a group of highly oxygenated lanostane-type triterpenoids from the traditional Chinese medicinal mushroom Ganoderma lucidum, possessed significant pharmacological activities. Due to the difficulty in its genetic manipulation, low yield, and slow growth of G. lucidum, biosynthesis of GAs in a heterologous host is a promising alternative for their efficient production. Heterologous production of a GA, 3-hydroxy-lanosta-8,24-dien-26-oic acid (HLDOA), was recently achieved by expressing CYP5150L8 from Ganoderma lucidum in Saccharomyces cerevisiae, but post-modification of HLDOA to biosynthesize other GAs remains unclear. In this study, another P450 from G. lucidum, CYP5139G1, was identified to be responsible for C-28 oxidation of HLDOA, resulting in the formation of a new GA 3,28-dihydroxy-lanosta-8,24-dien-26-oic acid (DHLDOA) by the engineered yeast, whose chemical structure was confirmed by UPLC-APCI-HRMS and NMR. In vitro enzymatic experiments confirmed the oxidation of HLDOA to DHLDOA by CYP5139G1. As the DHLDOA production was low (0.27 mg/L), to improve it, the strategy of adjusting the dosage of hygromycin and geneticin G418 to respectively manipulate the copy number of plasmids pRS425-Hyg-CYP5150L8-iGLCPR (harboring CYP5150L8, iGLCPR, and hygromycin-resistant gene hygR) and pRS426-KanMx-CYP5139G1 (harboring CYP5139G1 and G418-resistant gene KanMx) was adopted. Finally, 2.2 mg/L of DHLDOA was obtained, which was 8.2 fold of the control (without antibiotics addition). The work enriches the GA biosynthetic enzyme library, and is helpful to construct heterologous cell factories for other GA production as well as to elucidate the authentic GA biosynthetic pathway in G. lucidum. KEY POINTS: • Another P450 gene responsible for GA's post-modification was discovered and identified. • One new GA, DHLDOA, was identified and produced via engineered yeast. • With the balance of the two CYP genes expression, DHLDOA production was significantly improved.


Assuntos
Ganoderma , Reishi , Triterpenos , Expressão Gênica , Reishi/genética , Saccharomyces cerevisiae/genética
4.
Exp Cell Res ; 384(2): 111642, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562862

RESUMO

Our hypothesis is that hyaluronic acid may regulate the differentiation of human amniotic epithelial cells (hAECs) into insulin-producing cells and help the treatment of type 1 diabetes. Herein, a protocol for the stepwise in vitro differentiation of hAECs into functional insulin-producing cells was developed by mimicking the process of pancreas development. Treatment of hAECs with hyaluronic acid enhanced their differentiation of definitive endoderm and pancreatic progenitors. Endodermal markers Sox17 and Foxa2 and pancreatic progenitor markers Pax6, Nkx6.1, and Ngn3 were upregulated an enhanced gene expression in hAECs, but hAECs did not express the ß cell-specific transcription factor Pdx1. Interestingly, hyaluronic acid promoted the expression of major pancreatic development-related genes and proteins after combining with commonly used inducers of stem cells differentiation into insulin-producing cells. This indicated the potent synergistic effects of the combination on hAECs differentiation in vitro. By establishing a multiple injection transplantation strategy via tail vein injections, hAECs transplantation significantly reduced hyperglycemia symptoms, increased the plasma insulin content, and partially repaired the islet structure in type 1 diabetic mice. In particular, the combination of hAECs with hyaluronic acid exhibited a remarkable therapeutic effect compared to both the insulin group and the hAECs alone group. The hAECs' paracrine action and hyaluronic acid co-regulated the local immune response, improved the inflammatory microenvironment in the damaged pancreas of type 1 diabetic mice, and promoted the trans-differentiation of pancreatic α cells into ß cells. These findings suggest that hyaluronic acid is an efficient co-inducer of the differentiation of hAECs into functional insulin-producing cells, and hAECs treatment with hyaluronic acid may be a promising cell-replacement therapeutic approach for the treatment of type 1 diabetes.


Assuntos
Âmnio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Células Epiteliais/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Ativinas/metabolismo , Âmnio/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
5.
Appl Microbiol Biotechnol ; 104(4): 1661-1671, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865439

RESUMO

The genetic manipulation of basidiomycete mushrooms is notoriously difficult and immature, and there is a lack of research reports on clustered regularly interspaced short palindromic repeat (CRISPR) based gene editing of functional genes in mushrooms. In this work, Ganoderma lucidum, a famous traditional medicinal basidiomycete mushroom, which produces a type of unique triterpenoid-anti-tumor ganoderic acids (GAs), was used, and a CRISPR/CRISPR-associated protein-9 nuclease (Cas9) editing system for functional genes of GA biosynthesis was constructed in the mushroom. As proof of concept, the effect of different gRNA constructs with endogenous u6 promoter and self-cleaving ribozyme HDV on ura3 disruption efficiency was investigated at first. The established system was applied to edit a cytochrome P450 monooxygenase (CYP450) gene cyp5150l8, which is responsible for a three-step biotransformation of lanosterol at C-26 to ganoderic acid 3-hydroxy-lanosta-8, 24-dien-26 oic acid. As a result, precisely edited cyp5150l8 disruptants were obtained after sequencing confirmation. The fermentation products of the wild type (WT) and cyp5150l8 disruptant were analyzed, and a significant decrease in the titer of four identified GAs was found in the mutant compared to WT. Another CYP gene involved in the biosynthesis of squalene-type triterpenoid 2, 3; 22, 23-squalene dioxide, cyp505d13, was also disrupted using the established CRISPR-Cas9 based gene editing platform of G. lucidum. The work will be helpful to strain molecular breeding and biotechnological applications of G. lucidum and other basidiomycete mushrooms.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Reishi/genética , Proteína 9 Associada à CRISPR , Sistema Enzimático do Citocromo P-450/genética , Fermentação , Microbiologia Industrial
6.
Biotechnol Bioeng ; 115(10): 2456-2466, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29940067

RESUMO

Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is an important antitumor agent for cancer treatment, but its market supply suffers from a low production titer. The role of AP-3 unusual glycolate unit supply on its biosynthesis was investigated in this work by overexpressing the responsible gene cluster asm13-17 in A. pretiosum (WT). As a result, the accumulation of AP-3 and its intermediate glyceryl-S-ACP in the asm13-17-overexpressed strain (Oasm13-17) versus WT was enhanced by 1.94 and 1.49-fold, respectively. To provide a higher supply of another precursor 3-amino-5-hydroxybenzoic acid, asmUdpg was also overexpressed in Oasm13-17 (Oasm13-17:asmUdpg), and an improved AP-3 titer of 680.5 mg/L was achieved in shake flasks. To further enhance the AP-3 titer, a rational fed-batch strategy was developed in bioreactor fermentation of Oasm13-17:asmUdpg; and by pulse feeding 15 g/L fructose and 1.64 g/L isobutanol at 60, 96, and 120 hr, the AP-3 production level reached 757.7 mg/L, which is much higher than ever reported in bioreactors. This work demonstrated that a rational approach combining precursor pathway engineering with substrate feeding was very effective in enhancing the AP-3 titer, and this enabling methodology would be helpful to industrial production of this eye-catching drug.


Assuntos
Actinobacteria , Antineoplásicos/metabolismo , Proteínas de Bactérias , Reatores Biológicos , Maitansina/análogos & derivados , Engenharia Metabólica , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Maitansina/biossíntese
7.
Biotechnol Bioeng ; 115(7): 1842-1854, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29476632

RESUMO

Ganoderic acid (GA), a triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, possesses antitumor and other significant pharmacological activities. Owing to the notorious difficulty and immaturity in genetic manipulation of higher fungi as well as their slow growth, biosynthesis of GAs in a heterologous host is an attractive alternative for their efficient bioproduction. In this study, using Saccharomyces cerevisiae as a host, we did a systematic screening of cytochrome P450 monooxygenase (CYP450) gene candidates from G. lucidum, which may be responsible for the GA biosynthesis from lanosterol but have not been functionally characterized. As a result, overexpression of a CYP450 gene cyp5150l8 was firstly found to produce an antitumor GA, 3-hydroxy-lanosta-8, 24-dien-26 oic acid (HLDOA) in S. cerevisiae, as confirmed by HPLC, LC-MS and NMR. A final titer of 14.5 mg/L of HLDOA was obtained at 120 hr of the yeast fermentation. Furthermore, our in vitro enzymatic experiments indicate that CYP5150L8 catalyzes a three-step biotransformation of lanosterol at C-26 to synthesize HLDOA. To our knowledge, this is the first report on the heterologous biosynthesis of GAs. The results will be helpful to the GA biosynthetic pathway elucidation and to future optimization of heterologous cell factories for GA production.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica , Reishi/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Lanosterol/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reishi/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
Biotechnol Bioeng ; 114(12): 2794-2806, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28782796

RESUMO

Ansamitocin P-3 (AP-3) is a maytansinoid with its most compelling antitumor activity, however, the low production titer of AP-3 greatly restricts its wide commercial application. In this work, a combinatorial approach including random mutation and metabolic engineering was conducted to enhance AP-3 biosynthesis in Actinosynnema pretiosum. First, a mutant strain M was isolated by N-methyl-N'-nitro-N-nitrosoguanidine mutation, which could produce AP-3 almost threefold that of wild type (WT) in 48 deep-well plates. Then, by overexpressing key biosynthetic genes asmUdpg and asm13-17 in the M strain, a further 60% increase of AP-3 production in 250-ml shake flasks was achieved in the engineered strain M-asmUdpg:asm13-17 compared to the M strain, and its maximum AP-3 production reached 582.7 mg/L, which is the highest as ever reported. Both the gene transcription levels and intracellular intermediate concentrations in AP-3 biosynthesis pathway were significantly increased in the M and M-asmUdpg:asm13-17 during fermentation compared to the WT. The good fermentation performance of the engineered strain was also confirmed in a lab-scale bioreactor. This work demonstrated that combination of random mutation and metabolic engineering could promote AP-3 biosynthesis and might be helpful for increasing the production of other industrially important secondary metabolites.


Assuntos
Actinobacteria/fisiologia , Vias Biossintéticas/genética , Melhoramento Genético/métodos , Maitansina/análogos & derivados , Engenharia Metabólica/métodos , Mutação/genética , Actinobacteria/classificação , Maitansina/biossíntese , Especificidade da Espécie , Regulação para Cima/genética
9.
Exp Cell Res ; 345(2): 218-29, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27237096

RESUMO

This study investigated the pro-proliferative effect of hyaluronic acid (HA) on human amniotic mesenchymal stem cells (hAMSCs) and the underlying mechanisms. Treatment with HA increased cell population growth in a dose- and time-dependent manner. Analyses by flow cytometry and immunocytochemistry revealed that HA did not change the cytophenotypes of hAMSCs. Additionally, the osteogenic, chondrogenic, and adipogenic differentiation capabilities of these hAMSCs were retained after HA treatment. Moreover, HA increased the mRNA expressions of wnt1, wnt3a, wnt8a, cyclin D1, Ki-67, and ß-catenin as well as the protein level of ß-catenin and cyclin D1 in hAMSCs; and the nuclear localization of ß-catenin was also enhanced. Furthermore, the pro-proliferative effect of HA and up-regulated expression of Wnt/ß-catenin pathway-associated proteins - wnt3a, ß-catenin and cyclin D1 in hAMSCs were significantly inhibited upon pre-treatment with Wnt-C59, an inhibitor of the Wnt/ß-catenin pathway. These results suggest that HA may positively regulate hAMSCs proliferation through regulation of the Wnt/ß-catenin signaling pathway.


Assuntos
Âmnio/citologia , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Benzenoacetamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Feminino , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fenótipo , Gravidez , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
10.
Bioprocess Biosyst Eng ; 40(7): 1133-1139, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382459

RESUMO

Our previous work showed that the biosynthesis of ansamitocin P-3 (AP-3), an anti-tumor agent, by Actinosynnema pretiosum was depressed by ammonium but enhanced by isobutanol in the medium. Here we show proteomics analyses on A. pretiosum in different fermentation conditions with and without ammonium or isobutanol using two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization, and linear ion trap quadrupole mass spectrometry. Pairwise comparison of repetitive 2-DE maps was performed to find differentially expressed spots, and eight proteins were identified as functionally annotated ones. Among these proteins, D-3-phosphoglycerate dehydrogenase (PGDH) and glyceraldehyde 3-phosphate dehydrogenase showed statistically significant up-regulation in ammonium vs. basic or isobutanol medium, while fatty acid synthetase, histidine-tRNA ligase, transposase, molecular chaperone GroEL, SAM-dependent methyltransferase, and Crp/Fnr family transcriptional regulator were overexpressed in ammonium vs. basic medium. Based on the 2-DE data, exogenous L-serine which could inhibit the PGDH activity was added to the cultures with isobutanol, and a lower AP-3 production was confirmed under 2.5 mM serine addition (24 or 48 h).


Assuntos
Actinobacteria , Proteômica , Compostos de Amônio , Butanóis , Maitansina/análogos & derivados , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Bioprocess Biosyst Eng ; 39(1): 75-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26508324

RESUMO

To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.


Assuntos
Cálcio/metabolismo , Nitrogênio/metabolismo , Reishi/crescimento & desenvolvimento , Triterpenos/metabolismo , Cálcio/farmacologia
12.
Bioprocess Biosyst Eng ; 39(1): 37-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26531749

RESUMO

Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production.


Assuntos
Biomassa , Reatores Biológicos , Polissacarídeos Fúngicos/biossíntese , Reishi/crescimento & desenvolvimento , Triterpenos/metabolismo
13.
Metab Eng ; 28: 74-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527439

RESUMO

Paired homologs of γ-butyrolactone (GBL) biosynthesis gene afsA and GBL receptor gene arpA are located at different positions in genome of Streptomyces hygroscopicus 5008. Inactivation of afsA homologs dramatically decreased biosynthesis of validamycin, an important anti-fungal antibiotic and a critical substrate for antidiabetic drug synthesis, and the deletion of arpA homologs increased validamycin production by 26% (ΔshbR1) and 20% (ΔshbR3). By double deletion, the ΔshbR1/R3 mutant showed higher transcriptional levels of adpA-H (the S. hygroscopicus ortholog of the global regulatory gene adpA) and validamycin biosynthetic genes, and validamycin production increased by 55%. Furthermore, by engineering a high-producing industrial strain via tandem deletion of GBL receptor genes, validamycin production and productivity were enhanced from 19 to 24 g/L (by 26%) and from 6.7 to 9.7 g/L(-1) d(-1) (by 45%), respectively, which was the highest ever reported. The strategy demonstrated here may be useful to engineering other Streptomyces spp. with multiple pairs of afsA-arpA homologs.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Inositol/análogos & derivados , Receptores de GABA-A/genética , Streptomyces , Genes Bacterianos , Inositol/biossíntese , Inositol/genética , Streptomyces/genética , Streptomyces/metabolismo
14.
Bioorg Med Chem Lett ; 25(9): 1823-6, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25863432

RESUMO

Three new cytochalasins (1-3) together with two known cytochalasin analogues (4 and 5) were isolated from the chloroform fraction of ethanolic extract of a medicinal macrofungus Cordyceps taii. The structures of the new compounds were elucidated on the basis of spectroscopic analysis, including HRESIMS, 1D and 2D NMR experiments. The cytotoxicities of Compounds 1-5 were investigated by the sulforhodamine B (SRB) method in vitro against human highly metastatic lung cancer cell 95-D, human lung cancer cell line A-549 and normal hepatocyte HL-7702. The results revealed that Compounds 4 and 5 showed potent antitumor activities against human lung cancer cell 95-D with IC50 value of 3.67 and 4.04 µM, respectively. In comparison with cisplatin, the first-line chemotherapy drug, they had little or no cytotoxicity on normal cells, but showed stronger cytotoxic effects on cancer cells 95-D.


Assuntos
Antineoplásicos/farmacologia , Cordyceps/química , Citocalasinas/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocalasinas/química , Citocalasinas/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
BMC Complement Altern Med ; 15: 216, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26155792

RESUMO

BACKGROUND: Cordyceps taii, an entomogenous fungus native to south China, is a folk medicine with varieties of pharmacological activities including anticancer effect. To validate the ethnopharmacological claim against cancer, the antitumor and antimetastatic activities of chloroform extract of C. taii (CFCT) were investigated in vivo. METHODS: The in vitro cytotoxic activities of CFCT against human lung cancer (A549) and gastric cancer (SGC-7901) cells were evaluated using the Sulforhodamine B (SRB) assay. In vivo anti tumor and antimetastatic activities, Kunming mice bearing sarcoma 180 and C57BL/6 mice bearing melanoma B16F10 were employed, respectively. The antitumor effects of CFCT were completely evaluated on the basis of the tumor weight, survival time, histologic analysis, and immune organ indices. The histopathological change, metastatic foci and malignant melanoma specific marker HMB45 in the lung tissue were detected for the evaluation of the antimetastatic activity of CFCT. RESULTS: CFCT exhibited dose- and time-dependent cytotoxicities against A549 and SGC-7901 cells with the IC50 values of 30.2 and 65.7 µg/mL, respectively. Furthermore, CFCT at a dose of 50 or 100 mg/kg could significantly inhibit the tumor growth in vivo and prolonged the survival time in two different models as compared with the model group, especially when combined with the CTX at a low dose rate. And it also increased spleen index of Kunming mice and thymus index of C57BL/6 mice. Meanwhile, histologic analysis illustrated that CFCT alone or in combination with CTX could induce tumor tissue necrosis of both models. In addition, CFCT at a dose of 50 or 100 mg/kg inhibited the lung metastasis of melanoma B16F10 in tumor-bearing C57BL/6 mice. The antimetastatic effect was also observed when CFCT was used in combination with CTX. In comparison to any other groups, CFCT at a dose of 100 mg/kg could effectively enhance the GSH-Px activities of various tissues in tumor-bearing C57BL/6 mice. CONCLUSIONS: These findings demonstrate that CFCT has potent in vivo antitumor and antimetastatic activities, and may be helpful to the development of anticancer chemopreventive agents from C. taii.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cordyceps/química , Animais , Antineoplásicos/química , Produtos Biológicos/química , Linhagem Celular Tumoral , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Appl Environ Microbiol ; 80(13): 3879-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747899

RESUMO

Pichia guilliermondii is a Crabtree-negative yeast that does not normally exhibit respirofermentative metabolism under aerobic conditions, and methods to trigger this metabolism may have applications for physiological study and industrial applications. In the present study, CAT8, which encodes a putative global transcriptional activator, was disrupted in P. guilliermondii. This yeast's ethanol titer increased by >20-fold compared to the wild type (WT) during aerobic fermentation using glucose. A comparative transcriptional analysis indicated that the expression of genes in the tricarboxylic acid cycle and respiratory chain was repressed in the CAT8-disrupted (ΔCAT8) strain, while the fermentative pathway genes were significantly upregulated. The respiratory activities in the ΔCAT8 strain, indicated by the specific oxygen uptake rate and respiratory state value, decreased to one-half and one-third of the WT values, respectively. In addition, the expression of HAP4, a transcriptional respiratory activator, was significantly repressed in the ΔCAT8 strain. Through disruption of HAP4, the ethanol production of P. guilliermondii was also increased, but the yield and titer were lower than that in the ΔCAT8 strain. A further transcriptional comparison between ΔCAT8 and ΔHAP4 strains suggested a more comprehensive reprogramming function of Cat8 in the central metabolic pathways. These results indicated the important role of CAT8 in regulating the glucose metabolism of P. guilliermondii and that the regulation was partially mediated by repressing HAP4. The strategy proposed here might be applicable to improve the aerobic fermentation capacity of other Crabtree-negative yeasts.


Assuntos
Redes e Vias Metabólicas/genética , Pichia/genética , Pichia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Etanol/metabolismo , Fermentação , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Engenharia Metabólica , Análise do Fluxo Metabólico , Oxirredução , Oxigênio/metabolismo
17.
Biotechnol Bioeng ; 111(11): 2358-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24870062

RESUMO

Metal ions affect cell physiology and metabolism significantly, but the role of Mn(2+) in the secondary metabolism of mushrooms is yet unclear. In static liquid cultivation of Ganoderma lucidum for producing antitumor ganoderic acids (GAs), the Mn(2+) addition was performed. Addition of 10 mM Mn(2+) at the start of the static liquid cultivation resulted in 2.2-fold improvement of total GAs production. The expression levels of GA biosynthetic and Ca(2+) sensors' genes were up-regulated with Mn(2+) induction while down-regulated by adding cyclosporin A (calcineurin inhibitor), suggesting that higher GA production might result from calcineurin signal regulation. Intracellular Ca(2+) imaging and calcineurin inhibitor study revealed that addition of Mn(2+) led to Ca(2+) influx from medium to the cells to trigger calcineurin signals. Mn(2+) addition was therefore an efficient induction strategy for improving GAs production, whose regulation mechanism was via calcineurin signaling transduction.


Assuntos
Cátions Bivalentes/metabolismo , Manganês/metabolismo , Reishi/crescimento & desenvolvimento , Reishi/metabolismo , Triterpenos/metabolismo , Cálcio/metabolismo
18.
Biotechnol Bioeng ; 111(12): 2580-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24895214

RESUMO

The C6 dicarboxylic acid, adipic acid, is an important platform chemical in industry. Biobased production of adipic acid is a promising alternative to the current petrochemical route. Here, we report biosynthesis of adipic acid using an artificial pathway inspired by the reversal of beta-oxidation of dicarboxylic acids. The biosynthetic pathway comprises condensation of acetyl-CoA and succinyl-CoA to form the C6 backbone and subsequent reduction, dehydration, hydrogenation, and release of adipic acid from its thioester. The pathway was first tested in vitro with reconstituted pathway enzymes and then functionally introduced into Escherichia coli for the biosynthesis and excretion of adipic acid into the culture medium. The production titer was increased by approximately 20-fold through the combination of recruiting enzymes that were more suitable to catalyze the synthetic reactions and increasing availability of the condensation substrates. This work demonstrates direct biosynthesis of adipic acid via non-natural synthetic pathway, which may enable its renewable production.


Assuntos
Adipatos/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Adipatos/análise , Redes e Vias Metabólicas , Oxirredução , Proteínas Recombinantes/química , Biologia Sintética
19.
Appl Microbiol Biotechnol ; 98(18): 7911-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25060680

RESUMO

Validamycin A (VAL-A) is a widely used antifungal antibiotic for the treatment of sheath blight disease of rice and other plants. It can be produced from agro-industrial by-products by Streptomyces hygroscopicus 5008. To enhance its production titer, in this work, the entire val gene cluster was amplified in tandem in S. hygroscopicus 5008 by integrating the zouA-mediated DNA amplification system into between the two boundaries of val gene cluster, resulting in multiple copies (mainly three to five) of the val gene cluster. The genetic stability of the amplified copies was confirmed by Southern blot and fermentation experiments. In shake flask fermentation, the recombinant strain (TC03) led to a 34% enhancement of VAL-A production titer compared to that of the wild-type strain, while the accumulation of intermediate validoxylamine A was decreased in TC03. Additionally, both the structural gene transcription levels and the ValG enzyme activity were significantly increased in TC03. This work demonstrated that the amplification of the val gene cluster was an efficient strategy to enhance VAL-A production by S. hygroscopicus 5008, and the information obtained would be helpful for engineering other interesting antibiotic biosynthesis by gene cluster amplification.


Assuntos
Inositol/análogos & derivados , Família Multigênica/genética , Streptomyces/metabolismo , Inositol/genética , Inositol/metabolismo , Família Multigênica/fisiologia , Streptomyces/genética
20.
Appl Microbiol Biotechnol ; 98(10): 4399-407, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522728

RESUMO

Lavendamycin methyl ester (LME) is a derivative of a highly functionalized aminoquinone alkaloid lavendamycin and could be used as a scaffold for novel anticancer agent development. This work demonstrated LME production by cultivation of an engineered strain of Streptomyces flocculus CGMCC4.1223 ΔstnB1, while the wild-type strain did not produce. To enhance its production, the effect of shear stress and oxygen supply on ΔstnB1 strain cultivation was investigated in detail. In flask culture, when the shaking speed increased from 150 to 220 rpm, the mycelium was altered from a large pellet to a filamentous hypha, and the LME production was almost doubled, while no significant differences were observed among varied filling volumes, which implied a crucial role of shear stress in the morphology and LME production. To confirm this suggestion, experiments with agitation speed ranging from 400 to 1,000 rpm at a fixed aeration rate of 1.0 vvm were conducted in a stirred tank bioreactor. It was found that the morphology became more hairy with reduced pellet size, and the LME production was enhanced threefolds when the agitation speed increased from 400 to 800 rpm. Further experiments by varying initial k L a value at the same agitation speed indicated that oxygen supply only slightly affected the physiological status of ΔstnB1 strain. Altogether, shear stress was identified as a major factor affecting the cell morphology and LME production. The work would be helpful to the production of LME and other secondary metabolites by filamentous microorganism cultivation.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Streptomyces/citologia , Streptomyces/metabolismo , Estreptonigrina/análogos & derivados , Estresse Mecânico , Fenômenos Mecânicos , Oxigênio/metabolismo , Streptomyces/genética , Streptomyces/fisiologia , Estreptonigrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA