RESUMO
The gut is now recognized as a major regulator of motivational and emotional states. However, the relevant gut-brain neuronal circuitry remains unknown. We show that optical activation of gut-innervating vagal sensory neurons recapitulates the hallmark effects of stimulating brain reward neurons. Specifically, right, but not left, vagal sensory ganglion activation sustained self-stimulation behavior, conditioned both flavor and place preferences, and induced dopamine release from Substantia nigra. Cell-specific transneuronal tracing revealed asymmetric ascending pathways of vagal origin throughout the CNS. In particular, transneuronal labeling identified the glutamatergic neurons of the dorsolateral parabrachial region as the obligatory relay linking the right vagal sensory ganglion to dopamine cells in Substantia nigra. Consistently, optical activation of parabrachio-nigral projections replicated the rewarding effects of right vagus excitation. Our findings establish the vagal gut-to-brain axis as an integral component of the neuronal reward pathway. They also suggest novel vagal stimulation approaches to affective disorders.
Assuntos
Intestinos/fisiologia , Recompensa , Substância Negra/fisiologia , Nervo Vago/fisiologia , Vias Aferentes/metabolismo , Vias Aferentes/fisiologia , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Ácido Glutâmico/metabolismo , Intestinos/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , OptogenéticaRESUMO
Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.
Assuntos
Complexos de ATP Sintetase/metabolismo , Encéfalo/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Mitocôndrias/metabolismo , Síndrome de Williams/genética , Animais , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação OxidativaRESUMO
The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis.
Assuntos
Núcleo Celular/metabolismo , Glucose/metabolismo , Canais Iônicos/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Dinaminas/metabolismo , Técnicas de Introdução de Genes , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Espécies Reativas de Oxigênio , Proteína Desacopladora 2RESUMO
Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here, we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting.
Assuntos
Tecido Adiposo Marrom/metabolismo , Dieta , N-Acetilglucosaminiltransferases/metabolismo , Neurônios/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Jejum , Feminino , Grelina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Obesidade/metabolismo , Obesidade/prevenção & controleRESUMO
Mitochondria are key organelles in the maintenance of cellular energy metabolism and integrity. Here, we show that mitochondria number decrease but their size increase in orexigenic agouti-related protein (Agrp) neurons during the transition from fasted to fed to overfed state. These fusion-like dynamic changes were cell-type specific, as they occurred in the opposite direction in anorexigenic pro-opiomelanocortin (POMC) neurons. Interfering with mitochondrial fusion mechanisms in Agrp neurons by cell-selectively knocking down mitofusin 1 (Mfn1) or mitofusin 2 (Mfn2) resulted in altered mitochondria size and density in these cells. Deficiency in mitofusins impaired the electric activity of Agrp neurons during high-fat diet (HFD), an event reversed by cell-selective administration of ATP. Agrp-specific Mfn1 or Mfn2 knockout mice gained less weight when fed a HFD due to decreased fat mass. Overall, our data unmask an important role for mitochondrial dynamics governed by Mfn1 and Mfn2 in Agrp neurons in central regulation of whole-body energy metabolism.
Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Morte Celular , Dieta Hiperlipídica , Feminino , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Neurônios/citologia , Forma das Organelas , Tamanho das Organelas , Caracteres SexuaisRESUMO
BACKGROUND: Retroperitoneal liposarcoma (RLPS) constitutes the majority of retroperitoneal sarcomas. While surgical resection remains the sole curative approach, determining the optimal surgical strategy for RLPS remains elusive. This study addresses the ongoing debate surrounding the optimal surgical strategy for RLPS. METHODS: We recruited 77 patients with RLPS who underwent aggressive surgical policies. Patients were categorized into three surgical subtypes: suprapancreatic RLPS, pancreatic RLPS, and subpancreatic RLPS. Our standardized surgical strategy involved resecting macroscopically uninvolved adjacent organs according to surgical subtypes. We collected clinical, pathological and prognostic data for analyses. RESULTS: The median follow-up was 45.5 months. Overall survival (OS) and recurrence-free survival (RFS) were significantly correlated with multifocal RLPS, pathological subtype, recurrent RLPS and histological grade (P for OS = 0.011, 0.004, 0.010, and < 0.001, P for RFS = 0.004, 0.001, < 0.001, and < 0.001, respectively). The 5-Year Estimate OS of well-differentiated liposarcoma (WDLPS), G1 RLPS, de novo RLPS and unifocal RLPS were 100%, 89.4%, 75.3% and 69.1%, respectively. The distant metastasis rate was 1.4%. The morbidity rates (≥ grade III) for suprapancreatic, pancreatic, and subpancreatic RLPS were 26.7%, 15.6%, and 13.3%, respectively. The perioperative mortality rate is 2.6%. CONCLUSIONS: Standardized aggressive surgical policies demonstrated prognostic benefits for RLPS, particularly for G1 RLPS, WDLPS, unifocal RLPS, and de novo RLPS. This approach effectively balanced considerations of adequate exposure, surgical safety, and thorough removal of all fat tissue. G1 RLPS, WDLPS, unifocal RLPS, and de novo RLPS could be potential indications for aggressive surgical policies.
Assuntos
Lipossarcoma , Neoplasias Retroperitoneais , Humanos , Lipossarcoma/cirurgia , Lipossarcoma/patologia , Lipossarcoma/mortalidade , Neoplasias Retroperitoneais/cirurgia , Neoplasias Retroperitoneais/patologia , Neoplasias Retroperitoneais/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Prognóstico , Seguimentos , Recidiva Local de Neoplasia/cirurgia , Estudos Retrospectivos , Idoso de 80 Anos ou maisRESUMO
OBJECTIVES: By analyzing the distribution of existing and newly proposed staging imaging features in pT1-3 and pT4a tumors, we searched for a salient feature and validated its diagnostic performance. METHODS: Preoperative multiphase contrast-enhanced CT images of the training cohort were retrospectively collected at three centers from January 2016 to December 2017. We used the chi-square test to analyze the distribution of several stage-related imaging features in pT1-3 and pT4a tumors, including small arteriole sign (SAS), outer edge of the intestine, tumor invasion range, and peritumoral adipose tissue. Preoperative multiphase contrast-enhanced CT images of the validation cohort were retrospectively collected at Beijing Cancer Hospital from January 2018 to December 2018. The diagnostic performance of the selected imaging feature, including accuracy, sensitivity, and specificity, was validated and compared with the conventional clinical tumor stage (cT) by the McNemar test. RESULTS: In the training cohort, a total of 268 patients were enrolled, and only SAS was significantly different between pT1-3 and pT4a tumors. The accuracy, sensitivity, and specificity of the SAS and conventional cT in differentiating T1-3 and T4a tumors were 94.4%, 81.6%, and 97.3% and 53.7%, 32.7%, and 58.4%, respectively (all p < 0.001). In the validation cohort, a total of 135 patients were collected. The accuracy, sensitivity, and specificity of the SAS and the conventional cT were 93.3%, 76.2%, and 96.5% and 62.2%, 38.1%, and 66.7%, respectively (p < 0.001, p = 0.021, p < 0.001). CONCLUSION: Small arteriole sign positivity, an indirect imaging feature of serosa invasion, may improve the accuracy of identifying T4a colon cancer. CLINICAL RELEVANCE STATEMENT: Small arteriole sign helps to distinguish T1-3 and T4a colon cancer and further improves the accuracy of preoperative CT staging of colon cancer. KEY POINTS: ⢠The accuracy of preoperative CT staging of colon cancer is not ideal, especially for T4a tumors. ⢠Small arteriole sign (SAS) is a newly defined imaging feature that shows the appearance of tumor-supplying arterioles at the site where they penetrate the intestine wall. ⢠SAS is an indirect imaging marker of tumor invasion into the serosa with a great value in distinguishing between T1-3 and T4a colon cancer.
Assuntos
Neoplasias do Colo , Humanos , Arteríolas , Estudos Retrospectivos , Estadiamento de Neoplasias , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Tomografia Computadorizada por Raios XRESUMO
Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
Assuntos
Apetite , Densidade Óssea , Metabolismo Energético , Leptina/metabolismo , Serotonina/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: A new enzymatic hydrolysis-based process inspired by the Maillard reaction can produce strong flavored, high-value rapeseed oil that meets safety requirements. In the present study, the effect of reaction time (10-30 min) and temperature (130-160 °C) on the physicochemical properties, nutritional status, fatty acids composition and key aroma compounds of fragrant rapeseed oil (FRO) was investigated. RESULTS: An increasing reaction time and temperature substantially decreased the total tocopherol, polyphenol and sterol contents of FRO, but increased benzo[a]pyrene content, as well as the acid and peroxide values, which did not exceed the European Union legislation limit. Among the volatile components, 2,5-dimethyl was the main substance contributing to the barbecue flavor of FRO. The 150 °C for 30 min reaction conditions produced a FRO with a strong, fragrant flavor, with high total tocopherol (560.15 mg kg-1 ), polyphenol (6.82 mg kg-1 ) and sterol (790.65 mg kg-1 ) contents; acceptable acid (1.60 mg g-1 ) and peroxide values (4.78 mg g-1 ); and low benzo[a]pyrene (1.39 mg g-1 ) content. These were the optimal conditions for the enzymatic Maillard reaction, according to the principal component analysis. Furthermore, hierarchical cluster analysis showed that reaction temperature had a stronger effect on FRO than reaction time. CONCLUSION: The optimal enzymatic Maillard reaction conditions for the production of FRO are heating at 150 °C for 30 min. These findings provide new foundations for better understanding the composition and flavor profile of FRO, toward guiding its industrial production. © 2023 Society of Chemical Industry.
Assuntos
Reação de Maillard , Compostos Orgânicos Voláteis , Óleo de Brassica napus/química , Ácidos Graxos , Odorantes/análise , Estado Nutricional , Benzo(a)pireno , Compostos Orgânicos Voláteis/química , Polifenóis/análise , Peróxidos , Esteróis , TocoferóisRESUMO
Existing antibody-drug conjugate (ADC) linkers, whether cleavable or non-cleavable, are designed to release highly toxic payloads or payload derivatives upon internalisation of the ADCs into cells. However, clinical studies have shown that only <1 % of the dosed ADCs accumulate in tumour cells. The remaining >99 % of ADCs are nonspecifically distributed in healthy tissue cells, thus inevitably leading to off-target toxicity. Herein, we describe an intelligent tumour-specific linker strategy to address these limitations. A tumour-specific linker is constructed by introducing a hypoxia-activated azobenzene group as a toxicity controller. We show that this azobenzene-based linker is non-cleavable in healthy tissues (O2 >10 %), and the corresponding payload derivative, cysteine-appended azobenzene-linker-monomethyl auristatin E (MMAE), can serve as a safe prodrug to mask the toxicity of MMAE (switched off). Upon exposure to the hypoxic tumour microenvironment (O2<1 %), this linker is cleaved to release MMAE and fully restores the high cytotoxicity of the ADC (switched on). Notably, the azobenzene linker-containing ADC exhibits satisfactory antitumour efficacy in vivo and a larger therapeutic window compared with ADCs containing traditional cleavable or non-cleavable linkers. Thus, our azobenzene-based linker sheds new light on the development of next-generation ADC linkers.
Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacologia , Compostos Azo , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
OBJECTIVE: To assess the efficacy and safety of intentional watch and wait (W&W) and organ preservation surgery following neoadjuvant chemoradiotherapy plus consolidation CAPEOX in magnetic resonance imaging (MRI)-defined low-risk rectal cancer. BACKGROUND: Clinical T2/early T3 rectal cancers can achieve high yield pathological complete response (ypCR) rates after chemoradiotherapy; thus, an intentional W&W or organ preservation strategy for good clinical responders in these subgroups can be further tested. METHODS: This prospective, single-arm, phase 2 trial enrolled patients with low-risk MRI prestaged rectal cancers, who concurrently received chemoradiation, followed by four 3-weekly cycles of CAPEOX regimen. Following reassessment, clinical complete response (cCR) or near-cCR patients underwent W&W/organ preservation surgery; the primary endpoint was a 3-year organ preservation rate. RESULTS: Of the 64 participants, 58 completed treatment, with 6.4% and 33.9% grade 3 to 4 toxicities in the radiotherapy and consolidation CAPEOX phases, respectively, during a median 39.5-month follow-up. Initial cCR, and non-cCR occurred in 33, 13, and 18 patients, respectively. Of the 31 cCR and 7 near-cCR cases managed by W&W, local regrowth occurred in 7; of these, 6 received salvage surgery. The estimated 2-year local regrowth rates were 12.9% [95% confidence interval (CI): 1.1%-24.7%] in cCR and 42.9% (95% CI: 6.2%-79.6%) in near-cCR cases, respectively. Eight patients received local excision, including 2 with regrowth salvage. Lung metastases occurred in 3 patients and multiple metastasis occurred in 1 patient; no local recurrence occurred. The estimated 3-year organ preservation rate was 67.2% (95% CI: 55.6%-78.8%). The estimated 3-year cancer-specific survival, non-regrowth disease-free survival, and stoma-free survival were 96.6% (95% CI: 92.1%-100%), 92.2% (95% CI: 85.5%-98.9%), and 82.7% (95% CI: 73.5%-91.9%), respectively. CONCLUSIONS: Chemoradiotherapy plus consolidation CAPEOX for MRI-defined low-risk rectal cancer can lead to high rates of organ preservation through intentional W&W or local excision. The oncologic safety of this strategy should be further tested.
Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Preservação de Órgãos , Estudos Prospectivos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Quimiorradioterapia/métodos , Imageamento por Ressonância Magnética , Conduta Expectante , Recidiva Local de Neoplasia , Resultado do TratamentoRESUMO
Recent studies have demonstrated that the excessive inflammatory response is an important factor of death in coronavirus disease 2019 (COVID-19) patients. In this study, we propose a deep representation on heterogeneous drug networks, termed DeepR2cov, to discover potential agents for treating the excessive inflammatory response in COVID-19 patients. This work explores the multi-hub characteristic of a heterogeneous drug network integrating eight unique networks. Inspired by the multi-hub characteristic, we design 3 billion special meta paths to train a deep representation model for learning low-dimensional vectors that integrate long-range structure dependency and complex semantic relation among network nodes. Based on the representation vectors and transcriptomics data, we predict 22 drugs that bind to tumor necrosis factor-α or interleukin-6, whose therapeutic associations with the inflammation storm in COVID-19 patients, and molecular binding model are further validated via data from PubMed publications, ongoing clinical trials and a docking program. In addition, the results on five biomedical applications suggest that DeepR2cov significantly outperforms five existing representation approaches. In summary, DeepR2cov is a powerful network representation approach and holds the potential to accelerate treatment of the inflammatory responses in COVID-19 patients. The source code and data can be downloaded from https://github.com/pengsl-lab/DeepR2cov.git.
Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Inflamação/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , COVID-19/complicações , COVID-19/genética , COVID-19/virologia , Biologia Computacional , Aprendizado Profundo , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/virologia , Redes Neurais de Computação , SARS-CoV-2/patogenicidade , Software , Transcriptoma/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
BACKGROUND: Surgery is the primary treatment for locally advanced differentiated thyroid cancer (DTC). However, some locally advanced patients are not candidates for R0/1 resection. There is limited evidence of neoadjuvant treatment in locally advanced DTC. Surufatinib targets multiple kinases, which is efficient, tolerable, and safe in patients with radioiodine-refractory DTC. In addition, surufatinib plus toripalimab (an anti-PD-1 antibody) showed encouraging antitumor activity in advanced solid tumors. This study was designed to evaluate the efficacy and safety of surufatinib plus toripalimab in locally advanced DTC in the neoadjuvant setting. METHODS: In this single-arm, phase II study, patients with pathologically confirmed unresectable or borderline resectable DTC were eligible and received a combination of 250 mg of surufatinib (orally daily) with 240 mg of toripalimab (intravenous, every 3 weeks). Treatment continued until satisfied for curative surgery, disease progression, withdrawal of consent, unacceptable toxicity, or investigator decision. Primary endpoint was objective response rate (ORR). Secondary endpoints included R0/1 resection rate, adverse events (AEs), etc. RESULTS: Ten patients were enrolled and received at least 4 cycles of treatment. The ORR was 60%. Nine patients received R0/1 resections after neoadjuvant treatment. The median best percentage change in the sum of the target lesion diameter was 32%. Most adverse events (AEs) were grade 1 or 2. CONCLUSIONS: Surufatinib in combination with toripalimab as neoadjuvant therapy for locally advanced DTC was feasible, and the majority of patients achieved R0/1 resection. It represents a new option for locally advanced DTC and needs further investigation.
RESUMO
Hypothalamic agouti-related peptide and neuropeptide Y-expressing (AgRP) neurons have a critical role in both feeding and non-feeding behaviors of newborn, adolescent, and adult mice, suggesting their broad modulatory impact on brain functions. Here we show that constitutive impairment of AgRP neurons or their peripubertal chemogenetic inhibition resulted in both a numerical and functional reduction of neurons in the medial prefrontal cortex (mPFC) of mice. These changes were accompanied by alteration of oscillatory network activity in mPFC, impaired sensorimotor gating, and altered ambulatory behavior that could be reversed by the administration of clozapine, a non-selective dopamine receptor antagonist. The observed AgRP effects are transduced to mPFC in part via dopaminergic neurons in the ventral tegmental area and may also be conveyed by medial thalamic neurons. Our results unmasked a previously unsuspected role for hypothalamic AgRP neurons in control of neuronal pathways that regulate higher-order brain functions during development and in adulthood.
Assuntos
Hipotálamo , Neuropeptídeo Y , Animais , Camundongos , Proteína Relacionada com Agouti/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hipotálamo/metabolismo , Neuropeptídeo Y/metabolismo , Córtex Pré-Frontal/metabolismoRESUMO
BACKGROUND: Lymph node metastasis can independently predict oral squamous cell carcinoma patients' survival. This study would investigate the genetic and cellular differences between oral squamous cell carcinoma with positive and negative lymph node metastases. METHODS: We gathered single-cell RNA sequencing and bulk gene expression data from the Cancer Genome Atlas and Gene Expression Omnibus databases. Sixty lymph node-metastasis-related genes were discovered with refined single-cell RNA sequencing data analysis, and consensus clustering provided three molecular subtypes of oral squamous cell carcinoma. Least absolute shrinkage and selection operator analyses were then utilized to establish a five-gene risk model. CIBERSORT analysis revealed the immune infiltration profile of different risk subgroups. RESULTS: Oral squamous cell carcinoma patients were classified into three subtypes based on the 60 lymph node-metastasis-related key genes identified by single-cell RNA sequencing data. Patients in Subtype 3 showed a tendency for lymph node metastasis and poorer prognosis. Moreover, five biomarkers were selected from the 60 genes to construct a five-gene risk model evaluating the risk of lymph node metastasis. A lower probability of lymph node metastasis and a better prognosis was observed in the low-risk group. The immune infiltration of three different risk groups was explored with CIBERSORT. Besides, further analysis implied different sensitivities of anticancer drugs, including immunotherapy drugs and targeted compounds, in the three risk groups. CONCLUSION: In view of intratumoral heterogeneity, we found 60 genes associated with lymph node metastasis of oral squamous cell carcinoma. Subsequently, we constructed a five-gene signature that could improve the prediction of lymph node metastasis, clinical outcome, and promote individualized treatment strategies for oral squamous cell carcinoma.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Metástase Linfática/genética , Prognóstico , RNA-SeqRESUMO
OBJECTIVE: The aim of the study is to investigate the value of computed tomography (CT) radiomics features to discriminate the liver metastases (LMs) of digestive system neuroendocrine tumors (NETs) from neuroendocrine carcinoma (NECs). METHODS: Ninety-nine patients with LMs of digestive system neuroendocrine neoplasms from 2 institutions were included. Radiomics features were extracted from the portal venous phase CT images by the Pyradiomics and then selected by using the t test, Pearson correlation analysis, and least absolute shrinkage and selection operator method. The radiomics score (Rad score) for each patient was constructed by linear combination of the selected radiomics features. The radiological model was constructed by radiological features using the multivariable logistic regression. Then, the combined model was constructed by combining Rad score and the radiological model into logistic regression. The performance of all models was evaluated by the receiver operating characteristic curves with the area under curve (AUC). RESULTS: In the radiological model, only the enhancement degree (odds ratio, 8.299; 95% confidence interval, 2.070-32.703; P = 0.003) was an independent predictor for discriminating the LMs of digestive system NETs from those of NECs. The combined model constructed by the Rad score in combination with the enhancement degree showed good discrimination performance, with AUCs of 0.893, 0.841, and 0.740 in the training, testing, and external validation groups, respectively. In addition, it performed better than radiological model in the training and testing groups (AUC, 0.893 vs 0.726; AUC, 0.841 vs 0.621). CONCLUSIONS: The CT radiomics might be useful for discrimination LMs of digestive system NECs from NETs.
Assuntos
Carcinoma Neuroendócrino , Neoplasias Hepáticas , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Carcinoma Neuroendócrino/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Neoplasias Hepáticas/diagnóstico por imagem , Sistema Digestório , Estudos RetrospectivosRESUMO
PURPOSE: Retroperitoneal liposarcoma (RLPS) poses a challenging scenario for surgeons due to its unpredictable biological behavior. Surgery remains the primary curative option for RLPS; however, the need for additional information to guide surgical strategies persists. Volume-based 18F-FDG PET/CT may solve this issue. METHODS: We analyzed data from 89 RLPS patients, measuring metabolic tumor volume (MTV), total lesion glycolysis (TLG), and maximum standardized uptake value (SUVmax) and explored their associations with clinical, prognostic, and pathological factors. RESULTS: MTV, TLG of multifocal and recurrent RLPS were significantly higher than unifocal and primary ones (P < 0.001, P < 0.001, P = 0.003 and P = 0.002, respectively). SUVmax correlated with FNCLCC histological grade, mitotic count and Ki-67 index (P for G1/G2 = 0.005, P for G2/G3 = 0.017, and P for G1/G3 = 0.001, P < 0.001 and P = 0.024, respectively). MTG, TLG and SUVmax of WDLPS were significantly lower than DDLPS and PLPS (P for MTV were 0.009 and 0.022, P for TLG were 0.028 and 0.048, and P for SUVmax were 0.027 and < 0.001, respectively). Multivariable Cox analysis showed that MTV > 457.65 (P = 0.025), pathological subtype (P = 0.049) and FNCLCC histological grade (P = 0.033) were related to overall survival (OS). CONCLUSIONS: Our findings indicate that MTV is an independent prognostic factor for RLPS, while MTV, TLG, and SUVmax can preoperatively predict multifocal lesions, histological grade, and pathological subtype. Volume-based 18F-FDG PET/CT offers valuable information to aid in the decision-making process for RLPS surgical strategies.
Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Estudos Retrospectivos , Prognóstico , Carga Tumoral , Compostos RadiofarmacêuticosRESUMO
BACKGROUND: To investigate the association between CT signs and clinicopathological features and disease recurrence in patients with hepatoid adenocarcinoma of stomach (HAS). METHODS: Forty nine HAS patients undergoing radical surgery were retrospectively collected. Association between CT and clinicopathological features and disease recurrence was analyzed. Multivariate logistic model was constructed and evaluated for predicting recurrence by using receiver operating characteristic (ROC) curve. Survival curves between model-defined risk groups was compared using Kaplan-Meier method. RESULTS: 24(49.0%) patients developed disease recurrence. Multivariate logistic analysis results showed elevated serum CEA level, peritumoral fatty space invasion and positive pathological vascular tumor thrombus were independent factors for disease recurrence. Odds ratios were 10.87 (95%CI, 1.14-103.66), 6.83 (95%CI, 1.08-43.08) and 42.67 (95%CI, 3.66-496.85), respectively. The constructed model showed an area under ROC of 0.912 (95%CI,0.825-0.999). The model-defined high-risk group showed poorer overall survival and recurrence-free survival than the low-risk group (both P < 0.001). CONCLUSIONS: Preoperative CT appearance of peritumoral fatty space invasion, elevated serum CEA level, and pathological vascular tumor thrombus indicated poor prognosis of HAS patients.
Assuntos
Adenocarcinoma , Neoplasias Gástricas , Trombose , Neoplasias Vasculares , Humanos , Estudos Retrospectivos , Prognóstico , Neoplasias Vasculares/patologia , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/cirurgia , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Tomografia Computadorizada por Raios X , Estadiamento de NeoplasiasRESUMO
BACKGROUND: Estriol (E3) is a steroid hormone formed only during pregnancy in primates including humans. Although E3 is synthesized at large amounts through a complex pathway involving the fetus and placenta, it is not required for the maintenance of pregnancy and has classically been considered virtually inactive due to associated very weak canonical estrogen signaling. However, estrogen exposure during pregnancy may have an effect on organs both within and outside the reproductive system, and compounds with binding affinity for estrogen receptors weaker than E3 have been found to impact reproductive organs and the brain. Here, we explore potential effects of E3 on fetal development using mouse as a model system. RESULTS: We administered E3 to pregnant mice, exposing the fetus to E3. Adult females exposed to E3 in utero (E3-mice) had increased fertility and superior pregnancy outcomes. Female and male E3-mice showed decreased anxiety and increased exploratory behavior. The expression levels and DNA methylation patterns of multiple genes in the uteri and brains of E3-mice were distinct from controls. E3 promoted complexing of estrogen receptors with several DNA/histone modifiers and their binding to target genes. E3 functions by driving epigenetic change, mediated through epigenetic modifier interactions with estrogen receptors rather than through canonical nuclear transcriptional activation. CONCLUSIONS: We identify an unexpected functional role for E3 in fetal reproductive system and brain. We further identify a novel mechanism of estrogen action, through recruitment of epigenetic modifiers to estrogen receptors and their target genes, which is not correlated with the traditional view of estrogen potency.