Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(21): 11846-11858, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202123

RESUMO

Metal halide perovskites are promising for optoelectronic device applications; however, their poor stability under solar illumination remains a primary concern. While the intrinsic photostability of isolated neat perovskite samples has been widely discussed, it is important to explore how charge transport layers─employed in most devices─impact photostability. Herein, we study the effect of organic hole transport layers (HTLs) on light-induced halide segregation and photoluminescence (PL) quenching at perovskite/organic HTL interfaces. By employing a series of organic HTLs, we demonstrate that the HTL's highest occupied molecular orbital energy dictates behavior; furthermore, we reveal the key role of halogen loss from the perovskite and subsequent permeation into organic HTLs, where it acts as a PL quencher at the interface and introduces additional mass transport pathways to facilitate halide phase separation. In doing so, we both reveal the microscopic mechanism of non-radiative recombination at perovskite/organic HTL interfaces and detail the chemical rationale for closely matching the perovskite/organic HTL energetics to maximize solar cell efficiency and stability.

2.
Nano Lett ; 18(2): 1483-1488, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29368934

RESUMO

Structural complexity is of fundamental interest in materials science because it often results in unique physical properties and functions. Founded on this idea, the field of solid state chemistry has a long history and continues to be highly active, with new compounds discovered daily. By contrast, the area of two-dimensional (2D) materials is young, but its expansion, although rapid, is limited by a severe lack of structural diversity and complexity. Here, we report a novel 2D semiconductor with a hierarchical structure composed of covalently linked Re6Se8 clusters. The material, a 2D structural analogue of the Chevrel phase, is prepared via mechanical exfoliation of the van der Waals solid Re6Se8Cl2. Using scanning tunneling spectroscopy, photoluminescence and ultraviolet photoelectron spectroscopy, and first-principles calculations, we determine the electronic bandgap (1.58 eV), optical bandgap (indirect, 1.48 eV), and exciton binding energy (100 meV) of the material. The latter is consistent with the partially 2D nature of the exciton. Re6Se8Cl2 is the first member of a new family of 2D semiconductors whose structure is built from superatomic building blocks instead of simply atoms; such structures will expand the conceptual design space for 2D materials research.

3.
Angew Chem Int Ed Engl ; 57(21): 6125-6129, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29603561

RESUMO

Two-dimensional (2D) materials are commonly prepared by exfoliating bulk layered van der Waals crystals. The creation of synthetic 2D materials from bottom-up methods is an important challenge as their structural flexibility will enable chemists to tune the materials properties. A 2D material was assembled using C60 as a polymerizable monomer. The C60 building blocks are first assembled into a layered solid using a molecular cluster as structure director. The resulting hierarchical crystal is used as a template to polymerize its C60 monolayers, which can be exfoliated down to 2D crystalline nanosheets. Derived from the parent template, the 2D structure is composed of a layer of inorganic cluster, sandwiched between two monolayers of polymerized C60 . The nanosheets can be transferred onto solid substrates and depolymerized by heating. Electronic absorption spectroscopy reveals an optical gap of 0.25 eV, narrower than that of the bulk parent crystalline solid.

4.
J Am Chem Soc ; 139(16): 5648-5651, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28418665

RESUMO

This Communication describes a new molecular design for the efficient synthesis of donor-acceptor, cove-edge graphene nanoribbons and their properties in solar cells. These nanoribbons are long (∼5 nm), atomically precise, and soluble. The design is based on the fusion of electron deficient perylene diimide oligomers with an electron rich alkoxy pyrene subunit. This strategy of alternating electron rich and electron poor units facilitates a visible light fusion reaction in >95% yield, whereas the cove-edge nature of these nanoribbons results in a high degree of twisting along the long axis. The rigidity of the backbone yields a sharp longest wavelength absorption edge. These nanoribbons are exceptional electron acceptors, and organic photovoltaics fabricated with the ribbons show efficiencies of ∼8% without optimization.

5.
Chemistry ; 22(27): 9116-20, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27159538

RESUMO

Herein an efficient bottom-up solution-phase synthesis of N=9 armchair graphene nanoribbons (GNRs) is described. Catalyzed by Pd(PtBu3 )2 , Suzuki-Miyaura polymerization of a simple and readily available triaryl monomer provides a novel GNR precursor with a high molecular weight and excellent solubility. Upon cyclodehydrogenation, the resulting GNR exhibits semiconducting properties with an approximately 1.1 eV band gap (LUMO: -3.52 eV; HOMO: -4.66 eV) as characterized by UV/Vis-NIR spectroscopy and cyclic voltammetry.


Assuntos
Derivados de Benzeno/química , Grafite/química , Nanotubos de Carbono/química , Catálise , Complexos de Coordenação/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Microscopia de Força Atômica , Conformação Molecular , Paládio/química , Polimerização , Teoria Quântica , Espectrofotometria
6.
Adv Mater ; 31(36): e1903209, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342595

RESUMO

The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6 Se8 ) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.

7.
Nat Commun ; 9(1): 1687, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703958

RESUMO

Despite the great promise of armchair graphene nanoribbons (aGNRs) as high-performance semiconductors, practical band-gap engineering of aGNRs remains an unmet challenge. Given that width and edge structures are the two key factors for modulating band-gaps of aGNRs, a reliable synthetic method that allows control of both factors would be highly desirable. Here we report a simple modular strategy for efficient preparation of N = 6 aGNR, the narrowest member in the N = 3p (p: natural number) aGNR family, and two unsymmetrically edge-functionalized GNRs that contain benzothiadiazole and benzotriazole moieties. The trend of band-gap transitions among these GNRs parallels those in donor-acceptor alternating conjugated polymers. In addition, post-functionalization of the unsymmetrical heterocyclic edge via C-H borylation permits further band-gap tuning. Therefore, this method opens the door for convenient band-gap engineering of aGNRs through modifying the heteroarenes on the edge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA