Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(26): e2310526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221685

RESUMO

Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.

2.
Small ; 19(45): e2302629, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431237

RESUMO

Tailor-made carbonaceous-based cathodes with zincophilicity and hydrophilicity are highly desirable for Zn-ion storage applications, but it remains a great challenge to achieve both advantages in the synthesis. In this work, a template electrospinning strategy is developed to synthesize nitrogen and phosphorous co-doped hollow porous carbon nanofibers (N, P-HPCNFs), which deliver a high capacity of 230.7 mAh g-1 at 0.2 A g-1 , superior rate capability of 131.0 mAh g-1 at 20 A g-1 , and a maximum energy density of 196.10 Wh kg-1 at the power density of 155.53 W kg-1 . Density functional theory calculations (DFT) reveal that the introduced P dopants regulate the distribution of local charge density of carbon materials and therefore facilitate the adsorption of Zn ions due to the increased electronegativity of pyridinic-N. Ab initio molecular dynamics (AIMD) simulations indicate that the doped P species induce a series of polar sites and create a hydrophilic microenvironment, which decreases the impedance between the electrode and the electrolyte and therefore accelerates the reaction kinetics. The marriage of ex situ/in situ experimental analyses and theoretical simulations uncovers the origin of the enhanced zincophilicity and hydrophilicity of N, P-HPCNFs for energy storage, which accounts for the faster ion migration and electrochemical processes.

3.
Angew Chem Int Ed Engl ; 62(42): e202310970, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37644643

RESUMO

The large-scale applicability of Zn-metal anodes is severely impeded by the issues such as the dendrite growth, complicated hydrogen evolution, and uncontrollable passivation reaction. Herein, a negatively charged carboxylated double-network hydrogel electrolyte (Gelatin/Sodium alginate-acetate, denoted as Gel/SA-acetate) has been developed to stabilize the interfacial electrochemistry, which restructures a type of Zn2+ ion solvent sheath optimized via a chain-liquid synergistic effect. New hydrogen bonds are reconstructed with water molecules by the zincophilic functional groups, and directional migration of hydrated Zn2+ ions is therefore induced. Concomitantly, the robust chemical bonding of such hydrogel layers to the Zn slab exhibits a desirable anti-catalytic effect, thereby greatly diminishing the water activity and eliminating side reactions. Subsequently, a symmetric cell using the Gel/SA-acetate electrolyte demonstrates a reversible plating/stripping performance for 1580 h, and an asymmetric cell reaches a state-of-the-art runtime of 5600 h with a high average Coulombic efficiency of 99.9 %. The resultant zinc ion hybrid capacitors deliver exceptional properties including the capacity retention of 98.5 % over 15000 cycles, energy density of 236.8 Wh kg-1 , and high mechanical adaptability. This work is expected to pave a new avenue for the development of novel hydrogel electrolytes towards safe and stable Zn anodes.

4.
Angew Chem Int Ed Engl ; 62(10): e202218872, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647214

RESUMO

Highly reversible plating/stripping in aqueous electrolytes is one of the critical processes determining the performance of Zn-ion batteries, but it is severely impeded by the parasitic side reaction and dendrite growth. Herein, a novel electrolyte engineering strategy is first proposed based on the usage of 100 mM xylitol additive, which inhibits hydrogen evolution reaction and accelerates cations migration by expelling active H2 O molecules and weakening electrostatic interaction through oriented reconstruction of hydrogen bonds. Concomitantly, xylitol molecules are preferentially adsorbed by Zn surface, which provides a shielding buffer layer to retard the sedimentation and suppress the planar diffusion of Zn2+ ions. Zn2+ transference number and cycling lifespan of Zn∥Zn cells have been significantly elevated, overwhelmingly larger than bare ZnSO4 . The cell coupled with a NaV3 O8 cathode still behaves much better than the additive-free device in terms of capacity retention.

5.
PLoS Comput Biol ; 17(6): e1009048, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081706

RESUMO

Recently, an increasing number of studies have demonstrated that miRNAs are involved in human diseases, indicating that miRNAs might be a potential pathogenic factor for various diseases. Therefore, figuring out the relationship between miRNAs and diseases plays a critical role in not only the development of new drugs, but also the formulation of individualized diagnosis and treatment. As the prediction of miRNA-disease association via biological experiments is expensive and time-consuming, computational methods have a positive effect on revealing the association. In this study, a novel prediction model integrating GCN, CNN and Squeeze-and-Excitation Networks (GCSENet) was constructed for the identification of miRNA-disease association. The model first captured features by GCN based on a heterogeneous graph including diseases, genes and miRNAs. Then, considering the different effects of genes on each type of miRNA and disease, as well as the different effects of the miRNA-gene and disease-gene relationships on miRNA-disease association, a feature weight was set and a combination of miRNA-gene and disease-gene associations was added as feature input for the convolution operation in CNN. Furthermore, the squeeze and excitation blocks of SENet were applied to determine the importance of each feature channel and enhance useful features by means of the attention mechanism, thus achieving a satisfactory prediction of miRNA-disease association. The proposed method was compared against other state-of-the-art methods. It achieved an AUROC score of 95.02% and an AUPR score of 95.55% in a 10-fold cross-validation, which led to the finding that the proposed method is superior to these popular methods on most of the performance evaluation indexes.


Assuntos
Predisposição Genética para Doença , MicroRNAs/genética , Modelos Biológicos , Algoritmos , Humanos , Aprendizado de Máquina , Reprodutibilidade dos Testes
6.
Small ; 17(49): e2103517, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34725919

RESUMO

Rational engineering electrode structure to achieve an efficient triple-phase contact line is vital for applications such as in zinc-air batteries and water electrolysis. Herein, a facile "MOF-in situ-leaching and confined-growth-MOF" strategy is developed to construct a breathable trifunctional electrocatalyst based on N-doped graphitic carbon with Co nanoparticles spatially confined in an inherited honeycomb-like macroporous structure (denoted as Co@HMNC). The unique orderly arranged macroporous channels and the "ships in a bottle" confinement effect jointly expedite the triple transport, endowing the catalysts with fast reaction kinetics. As a result, the obtained Co@HMNC catalyst presents superb trifunctional performance with a positive half-wave potential (E1/2 ) of 0.90 V for oxygen reduction reaction (ORR), and low overpotentials of 318 and 51 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) at 10 mA cm-2 , respectively. The Co@HMNC-based liquid Zn-air battery reaches a large specific capacity of 859 mA h gZn -1 , a high-power density of 198 mW cm-2 , and long-term stability for 375 h, suggesting its promise for actual applications.

7.
Small ; 17(21): e2100372, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33864356

RESUMO

Electrocatalysts for efficient production of ammonia from nitrogen reduction reaction (NRR) under ambient conditions are attracted growing interest in recent years, which demonstrate a great potential to replace the Haber-Bosch method which suffers the problems of the huge energy consumption and massive CO2 production. In this work, a novel electrocatalyst of Au25 -Cys-M is fabricated for NRR under ambient conditions, with transition metal ions (e.g., Mo6+ , Fe3+ , Co2+ , Ni2+ ) atomically decorated on Au25 nanoclusters via thiol bridging. The Au25 -Cys-Mo catalyst exhibits the highest Faradaic efficiency (26.5%) and NH3 yield (34.5 µg h-1  mgcat -1 ) in 0.1 m HCl solution. X-ray photoelectron spectroscopy analysis and high angle annular dark field image-scanning transmission electron microscopy characterization reveal that the electronic structure of Mo is optimized by forming the structure of Au-S-Mo and Mo acts as active sites for activating the nitrogen to promote the electrochemical production of ammonia. This work provides a new insight into the precise fabrication of efficient NRR electrocatalysts.

8.
Small ; 17(29): e2101573, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137160

RESUMO

Single-phase perovskite oxides that contain nonprecious metals have long been pursued as candidates for catalyzing the oxygen evolution reaction, but their catalytic activity cannot meet the requirements for practical electrochemical energy conversion technologies. Here a cation deficiency-promoted phase separation strategy to design perovskite-based composites with significantly enhanced water oxidation kinetics compared to single-phase counterparts is reported. These composites, self-assembled from perovskite precursors, comprise strongly interacting perovskite and related phases, whose structure, composition, and concentration can be accurately controlled by tailoring the stoichiometry of the precursors. The composite catalyst with optimized phase composition and concentration outperforms known perovskite oxide systems and state-of-the-art catalysts by 1-3 orders of magnitude. It is further demonstrated that the strong interfacial interaction of the composite catalysts plays a key role in promoting oxygen ionic transport to boost the lattice-oxygen participated water oxidation. These results suggest a simple and viable approach to developing high-performance, perovskite-based composite catalysts for electrochemical energy conversion.

9.
Plant Cell Physiol ; 60(8): 1747-1760, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076768

RESUMO

Artemisinin, the frontline drug against malaria, is a sesquiterpenoid extracted from Artemisia annua. Light has been proposed to play an important role in the activation of artemisinin biosynthesis. Here, we report the basic leucine zipper transcription factor (TF) AaHY5 as a key regulator of light-induced biosynthesis of artemisinin. We show that AaHY5 transcription overlaps with that of artemisinin biosynthesis genes in response to light and in A. annua tissues. Analysis of AaHY5 overexpression and RNAi-suppression lines suggests that AaHY5 is a positive regulator of the expression of artemisinin biosynthesis genes and accumulation of artemisinin. We show that AaHY5 complements the hy5 mutant in Arabidopsis thaliana. Our data further suggest that AaHY5 interacts with AaCOP1, the ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1 in A. annua. In yeast one-hybrid and transient expression assays, we demonstrate that AaHY5 acts via the TF GLANDULAR TRICHOME-SPECIFIC WRKY 1 (AaGSW1) in artemisinin regulation. In summary, we present a novel regulator of artemisinin gene expression and propose a model in which AaHY5 indirectly controls artemisinin production in response to changing light conditions.


Assuntos
Artemisia annua/metabolismo , Artemisininas/metabolismo , Luz , Artemisia annua/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/efeitos da radiação , Fatores de Transcrição
10.
Angew Chem Int Ed Engl ; 58(43): 15441-15447, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31380596

RESUMO

Hierarchical hollow structures for electrode materials of supercapacitors could enlarge the surface area, accelerate the transport of ions and electrons, and accommodate volume expansion during cycling. Besides, construction of heterostructures would enhance the internal electric fields to regulate the electronic structures. All these features of hierarchical hollow heterostructures are beneficial for promoting the electrochemical properties and stability of electrode materials for high-performance supercapacitors. Herein, CoO/Co-Cu-S hierarchical tubular heterostructures (HTHSs) composed of nanoneedles are prepared by an efficient multi-step approach. The optimized sample exhibits a high specific capacity of 320 mAh g-1 (2300 F g-1 ) at 2.0 A g-1 and outstanding cycling stability with 96.5 % of the initial capacity retained after 5000 cycles at 10 A g-1 . Moreover, an all-solid-state hybrid supercapacitor (HSC) constructed with the CoO/Co-Cu-S and actived carbon shows a stable and high energy density of 90.7 Wh kg-1 at a power density of 800 W kg-1 .

11.
Small ; 14(34): e1801798, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30035849

RESUMO

Gel-polymer electrolytes are considered as a promising candidate for replacing the liquid electrolytes to address the safety concerns in Li-O2 /air batteries. In this work, by taking advantage of the hydrogen bond between thermoplastic polyurethane and aerogel SiO2 in gel polymer, a highly crosslinked quasi-solid electrolyte (FST-GPE) with multifeatures of high ionic conductivity, high mechanical flexibility, favorable flame resistance, and excellent Li dendrite impermeability is developed. The resulting gel-polymer Li-O2 /air batteries possess high reaction kinetics and stabilities due to the unique electrode-electrolyte interface and fast O2 diffusion in cathode, which can achieve up to 250 discharge-charge cycles (over 1000 h) in oxygen gas. Under ambient air atmosphere, excellent performances are observed for coin-type cells over 20 days and for prototype cells working under extreme bending conditions. Moreover, the FST-GPE electrolyte also exhibits durability to protect against fire, dendritic Li, and H2 O attack, demonstrating great potential for the design of practical Li-O2 /air batteries.

12.
Small ; 14(14): e1704233, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29473308

RESUMO

Hollow nanostructures with mesoporous shells are attractive for their advantageous structure-dependent high-efficiency electrochemical catalytic performances. In this work, a novel nanostructure of Fe-doped CoP hollow triangle plate arrays (Fe-CoP HTPAs) with unique mesoporous shells is designed and synthesized through a room-temperature postsynthetic ligand exchange reaction followed by a facile phosphorization treatment. The mild postsynthetic ligand exchange reaction of the presynthesized ZIF-67 TPAs with K4 [Fe(CN)6 ] in an aqueous solution at room temperature is of critical importance in achieving the final hollow nanostructure, which results in the production of CoFe(II)-PBA HTPAs that not only determine the formation of the interior voids in the nanostructure, but also provide the doping of Fe atoms to the CoP lattice. As expected, the as-prepared mesoporous Fe-CoP HTPAs exhibit pronounced activity for water splitting owing to the advantages of abundant active reaction sites, short electron and ion pathways, and favorable hydrogen adsorption free energy (ΔGH* ). For the hydrogen and oxygen evolution reactions with the Fe-CoP HTPAs in alkaline medium, the low overpotentials of 98 and 230 mV are observed, respectively, and the required cell voltage toward overall water splitting is only as low as 1.59 V for the driving current density of 10 mA cm-2 .

13.
Chemistry ; 24(52): 13800-13806, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29981182

RESUMO

Water electrolysis is regarded as a green and highly efficient approach to producing high-purity hydrogen, but commercialization of this technology still requires the development of high-performance and affordable electrocatalysts for the hydrogen evolution reaction (HER). Currently, because of its excellent electrical conductivity and good corrosion resistance in acidic media, cobalt phosphide (CoP) has become a representative non-noble-metal HER catalyst despite its inadequate catalytic activity. Herein, a strategy of multiple catalyst-structure engineering, which simultaneously includes doping, nanostructuring, and in situ nanocarbon coating, was employed to significantly improve the HER performance of CoP. CoP with optimized ruthenium doping and covered by ultrathin graphitic carbon shells shows remarkably high HER catalytic behaviour with a low overpotential of only 73 mV at a current density of 10 mA cm-2 and a small Tafel slope of 46 mV dec-1 , close to that of the Pt/C benchmark, while maintaining excellent durability. Moreover, the ultrathin graphene shell has a significant positive effect on catalytic activity. This work demonstrates the necessity and validity of multifold structural control, which can be widely used to design various materials for different catalytic processes.

14.
Langmuir ; 33(27): 6719-6726, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28636401

RESUMO

Metal ion doping and nanocoating a CdS photocatalyst have been proven to be effective strategies to inhibit photocorrosion and improve photocatalytic performance. In this study, carbon-coated Cu+-doped CdS nanocomposites (C-Cu-CdS) with a stable petalous structure and highly uniform size distribution were successfully synthesized via a facile one-step solvothermal method. Both Cu+ doping and carbon coating to the CdS photocatalyst are realized in this one-step strategy. Benefiting from the unique core-shell structure and metal ion doping, the as-prepared C-Cu-CdS catalyst exhibits significantly enhanced photostability and visible-light-driven photocatalytic efficiency. For an optimal Cu+ doping percentage of 1.0%, an average hydrogen production rate of 2796 µmol h-1 g-1 and an apparent quantum efficiency of 16.0% at a wavelength of 420 nm was observed, the latter of which is nearly 9.3 times higher than that of the carbon-coated CdS product without Cu+ doping. The origin of the improved photocatalytic activity is systematically investigated by examining the effects of Cu+ doping.

15.
Small ; 12(48): 6724-6734, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717138

RESUMO

A simple and green method is developed for the preparation of nanostructured TiO2 supported on nitrogen-doped carbon foams (NCFs) as a free-standing and flexible electrode for lithium-ion batteries (LIBs), in which the TiO2 with 2.5-4 times higher loading than the conventional TiO2 -based flexible electrodes acts as the active material. In addition, the NCFs act as a flexible substrate and efficient conductive networks. The nanocrystalline TiO2 with a uniform size of ≈10 nm form a mesoporous layer covering the wall of the carbon foam. When used directly as a flexible electrode in a LIB, a capacity of 188 mA h g-1 is achieved at a current density of 200 mA g-1 for a potential window of 1.0-3.0 V, and a specific capacity of 149 mA h g-1 after 100 cycles at a current density of 1000 mA g-1 is maintained. The highly conductive NCF and flexible network, the mesoporous structure and nanocrystalline size of the TiO2 phase, the firm adhesion of TiO2 over the wall of the NCFs, the small volume change in the TiO2 during the charge/discharge processes, and the high cut-off potential contribute to the excellent capacity, rate capability, and cycling stability of the TiO2 /NCFs flexible electrode.

16.
Inorg Chem ; 54(18): 9033-9, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26355012

RESUMO

In this study, we demonstrate a facile and novel dual-ion-exchange method together with subsequent visible-light induced reduction for synthesis of mesoporous BiVO4/Ag/AgCl ternary heterostructured microspheres (HSMSs) with uniform size distribution. Using flower-like BiOCl microspheres as the starting material, and introducing NaVO3 and AgNO3 by a facile impregnation method, mesoporous BiVO4/AgCl HSMSs have been obtained through solid-phase dual-ion-exchange reactions at 400 °C for 2 h. Interestingly, it has been found that Ag(+) ions play an indispensable role on the dual-ion-exchange reactions, and then the BiVO4/AgCl HSMSs are converted into BiVO4/Ag/AgCl ternary HSMSs by a facile visible-light illumination for 2 h. The as-prepared mesoporous BiVO4/Ag/AgCl ternary HSMSs manifest high photocatalytic activity in degrading methyl orange (MO) and phenol under visible-light illumination, and a possible Z-scheme photocatalytic mechanism is proposed to understand the enhanced photochemical properties.

17.
Angew Chem Int Ed Engl ; 54(12): 3722-5, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25620573

RESUMO

We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials.

18.
Environ Sci Technol ; 48(20): 12427-34, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25229807

RESUMO

In this work, a Ni+BaZr(0.4)Ce(0.4)Y(0.2)O(3-δ) (Ni+BZCY) anode with high water storage capability is used to increase the sulfur tolerance of nickel electrocatalysts for solid oxide fuel cells (SOFCs) with an oxygen-ion conducting Sm(0.2)Ce(0.8)O(1.9) (SDC) electrolyte. Attractive power outputs are still obtained for the cell with a Ni+BZCY anode that operates on hydrogen fuels containing 100-1000 ppm of H2S, while for a similar cell with a Ni+SDC anode, it displays a much reduced performance by introducing only 100 ppm of H2S into hydrogen. Operating on a hydrogen fuel containing 100 ppm of H2S at 600 °C and a fixed current density of 200 mA cm(-2), a stable power output of 148 mW cm(-2) is well maintained for a cell with a Ni+BZCY anode within a test period of 700 min, while it was decreased from an initial value of 137 mW cm(-2) to only 81 mW cm(-2) for a similar cell with a Ni+SDC anode after a test period of only 150 min. After the stability test, a loss of the Ni percolating network and reaction between nickel and sulfur appeared over the Ni+SDC anode, but it is not observed for the Ni+BZCY anode. This result highly promises the use of water-storing BZCY as an anode component to improve sulfur tolerance for SOFCs with an oxygen-ion conducting SDC electrolyte.


Assuntos
Fontes de Energia Elétrica , Metais/química , Enxofre/química , Eletrodos , Hidrogênio/química , Sulfeto de Hidrogênio/química , Óxidos/química , Oxigênio/química , Água/química
19.
Angew Chem Int Ed Engl ; 53(23): 5917-21, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24821565

RESUMO

Semiconductor heterostructures are of great interest in a wide range of applications. In this work, we design and synthesize a novel heteronanostructure with controlled relative composition, i.e., BiVO4/Bi2S3 hollow discoid-like particles with mesoporous shell. The synthesis involves a facile anion exchange process by reacting pre-synthesized BiVO4 discoid-like particles with Na2S in an aqueous solution. Benefiting from the unique structural features and the formation of heterostructure, the as-prepared BiVO4/Bi2S3 hollow discoids exhibit significantly enhanced photoelectrochemical current response and photocatalytic activity for reduction of Cr(VI) under visible-light illumination.

20.
Nanomicro Lett ; 16(1): 124, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372899

RESUMO

The pursuit of safer and high-performance lithium-ion batteries (LIBs) has triggered extensive research activities on solid-state batteries, while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation. Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs (ASSLBs), while it introduces new concerns about thermal stability. In this study, we propose the incorporation of a multi-functional flame-retardant triphenyl phosphate additive into poly(ethylene oxide), acting as a thin buffer layer between LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and garnet electrolyte. Through electrochemical stability tests, cycling performance evaluations, interfacial thermal stability analysis and flammability tests, improved thermal stability (capacity retention of 98.5% after 100 cycles at 60 °C, and 89.6% after 50 cycles at 80 °C) and safety characteristics (safe and stable cycling up to 100 °C) are demonstrated. Based on various materials characterizations, the mechanism for the improved thermal stability of the interface is proposed. The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature. Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA