Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 55, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822443

RESUMO

BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Masculino , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Idoso , Prognóstico , Variações do Número de Cópias de DNA/genética , Mutação/genética , Instabilidade de Microssatélites
2.
Nano Lett ; 23(17): 8171-8179, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638840

RESUMO

Despite its important role in understanding ultrafast spin dynamics and revealing novel spin/orbit effects, the mechanism of the terahertz (THz) emission from a single ferromagnetic nanofilm upon a femtosecond laser pump still remains elusive. Recent experiments have shown exotic symmetry, which is not expected from the routinely adopted mechanism of ultrafast demagnetization. Here, by developing a bidirectional pump-THz emission spectroscopy and associated symmetry analysis method, we set a benchmark for the experimental distinction of the THz emission induced by various mechanisms. Our results unambiguously unveil a new mechanism─anomalous Nernst effect (ANE) induced THz emission due to the ultrafast temperature gradient created by a femtosecond laser. Quantitative analysis shows that the THz emission exhibits interesting thickness dependence where different mechanisms dominate at different thickness ranges. Our work not only clarifies the origin of the ferromagnetic-based THz emission but also offers a fertile platform for investigating the ultrafast optomagnetism and THz spintronics.

3.
Cancer Cell Int ; 23(1): 229, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794491

RESUMO

BACKGROUND: Mutations in the KEAP1-NFE2L2 signaling pathway were linked to increased tumorigenesis and aggressiveness. Interestingly, not all hotspot mutations on NFE2L2 were damaging; some even were activating. However, there was conflicting evidence about the association between NFE2L2 mutation and Nrf2-activating mutation and responsiveness to immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) and other multiple cancers. METHODS: The study with the largest sample size (n = 49,533) explored the landscape of NFE2L2 mutations and their impact response/resistance to ICIs using public cohorts. In addition, the in-house WXPH cohort was used to validate the efficacy of immunotherapy in the NFE2L2 mutated patients with NSCLC. RESULTS: In two pan-cancer cohorts, Nrf2-activating mutation was associated with higher TMB value compared to wild-type. We identified a significant association between Nrf2-activating mutation and shorter overall survival in pan-cancer patients and NSCLC patients but not in those undergoing ICIs treatment. Similar findings were obtained in cancer patients carrying the NFE2L2 mutation. Furthermore, in NSCLC and other cancer cohorts, patients with NFE2L2 mutation demonstrated more objective responses to ICIs than patients with wild type. Our in-house WXPH cohort further confirmed the efficacy of immunotherapy in the NFE2L2 mutated patients with NSCLC. Lastly, decreased inflammatory signaling pathways and immune-depleted immunological microenvironments were enriched in Nrf2-activating mutation patients with NSCLC. CONCLUSIONS: Our study found that patients with Nrf2-activating mutation had improved immunotherapy outcomes than patients with wild type in NSCLC and other tumor cohorts, implying that Nrf2-activating mutation defined a distinct subset of pan-cancers and might have implications as a biomarker for guiding ICI treatment, especially NSCLC.

4.
Phytother Res ; 37(7): 3135-3160, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196671

RESUMO

Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Medicina Tradicional Chinesa , Medicina Herbária , Medicamentos de Ervas Chinesas/uso terapêutico , Prescrições
5.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677797

RESUMO

Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Mama , Transdução de Sinais , Extratos Vegetais/uso terapêutico
6.
Molecules ; 28(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513222

RESUMO

Considering the resistance and toxicity of traditional chemotherapeutic drugs, seeking potential candidate for treating breast cancer effectively is a clinical problem that should be solved urgently. Natural products have attracted extensive attention, owing to their multi-target advantages and low toxicity. In the current study, the effects of XK-81, a novel bromophenol compound extracted from Leathesia nana, on breast cancer, and its underlying mechanisms, were explored. Firstly, data from in vitro experiments indicated that 4T-1, one of common mouse breast cancer cell lines, was a XK-81-susceptible cell line, and ferroptosis was the major death manner in response to XK-81 treatment, which was evidenced by increasing intracellular Fe2+ and ROS level with condensed mitochondrial membrane densities, as well as decreasing the protein expressions of SLC7A11 and GPX4. In vivo, XK-81 suppressed the growth of 4T-1 breast-tumor in both BALB/C mice and zebrafish. Obviously, XK-81 decreased the protein expression of SLC7A11 and GPX4 in tumor tissues, hinting at the occurrence of ferroptosis. Moreover, XK-81 increased CD8+ T cells and NK cells numbers and regulated M1/M2 macrophage ratio in tumor tissues, indicating XK-81's immunotherapeutic effect. Additionally, the secretions of immune-related cytokines, including TNF-α, IL-1ß, and IL-12, were elevated with XK-81 stimulation in RAW 264.7 cells. Intriguingly, compared with doxorubicin-induced heart damage, XK-81 demonstrated the therapeutic advantage of little cardiotoxicity on the heart. XK-81 demonstrated potential antitumor advantage by both directly inducing ferroptosis-mediated death of tumor cells and immunization.


Assuntos
Neoplasias Mamárias Animais , Peixe-Zebra , Camundongos , Animais , Camundongos Endogâmicos BALB C , Imunoterapia , Imunização
7.
Med Res Rev ; 42(3): 1246-1279, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35028953

RESUMO

Immunotherapy sheds new light to cancer treatment and is satisfied by cancer patients. However, immunotoxicity, single-source antibodies, and single-targeting stratege are potential challenges to the success of cancer immunotherapy. A huge number of promising lead compounds for cancer treatment are of natural origin from herbal medicines. The application of natural products from herbal medicines that have immunomodulatory properties could alter the landscape of immunotherapy drastically. The present study summarizes current medication for cancer immunotherapy and discusses the potential chemicals from herbal medicines as immune checkpoint inhibitors that have a broad range of immunomodulatory effects. Therefore, this review provides valuable insights into the efficacy and mechanism of actions of cancer immunotherapies, including natural products and combined treatment with immune checkpoint inhibitors, which could confer an improved clinical outcome for cancer treatment.


Assuntos
Produtos Biológicos , Neoplasias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico , Imunomodulação , Imunoterapia , Neoplasias/terapia
8.
J Nanobiotechnology ; 20(1): 380, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986268

RESUMO

Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.


Assuntos
Imunidade Inata , Moléculas com Motivos Associados a Patógenos , Adjuvantes Imunológicos , Sistema Imunitário , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Receptores de Reconhecimento de Padrão
9.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362132

RESUMO

Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.


Assuntos
Medicina Herbária , Neoplasias , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Fosforilação , Adesão Celular , Microambiente Tumoral
10.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232291

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which is characterized by hyperglycemia, chronic insulin resistance, progressive decline in ß-cell function, and defect in insulin secretion. It has become one of the leading causes of death worldwide. At present, there is no cure for T2DM, but it can be treated, and blood glucose levels can be controlled. It has been reported that diabetic patients may suffer from the adverse effects of conventional medicine. Therefore, alternative therapy, such as traditional Chinese medicine (TCM), can be used to manage and treat diabetes. In this review, glycyrrhizic acid (GL) and its derivatives are suggested to be promising candidates for the treatment of T2DM and its complications. It is the principal bioactive constituent in licorice, one type of TCM. This review comprehensively summarized the therapeutic effects and related mechanisms of GL and its derivatives in managing blood glucose levels and treating T2DM and its complications. In addition, it also discusses existing clinical trials and highlights the research gap in clinical research. In summary, this review can provide a further understanding of GL and its derivatives in T2DM as well as its complications and recent progress in the development of potential drugs targeting T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico , Secreção de Insulina
11.
Molecules ; 27(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744822

RESUMO

Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.


Assuntos
Eucommiaceae , Hipertensão , Doenças Neurodegenerativas , China , Suplementos Nutricionais , Eucommiaceae/química , Humanos
12.
Pharmacol Res ; 173: 105888, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536546

RESUMO

Nuclear receptor binding SET Domain Protein 1 (NSD1) is a bifunctional transcriptional regulatory protein that encodes histone methyltransferase. Mono- and di-methylation of H3K36 by NSD1 is mainly primarily involved in the regulation of gene expression, DNA repair, alternative splicing, and other important biological processes. Many types of cancers, including acute myelogenous leukemia (AML), liver cancer, lung cancer, endometrial carcinoma, colorectal cancer, and pancreatic cancer, are associated with NSD1 fusion, missense mutation, nonsense mutation, silent mutation, deletion, and insertion of frameshift, and deletion in a frame. Therefore, targeting NSD1 may be a potential strategy for tumor therapy. An in-depth study of the structure and biological activities of NSD1 sets the groundwork for improving tumor therapy and creating NSD1 inhibitors. This article emphasizes the role of NSD1 in tumorigenesis and the development of NSD1 targeted small-molecule inhibitors.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias/metabolismo , Animais , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
Semin Cancer Biol ; 56: 56-71, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30261277

RESUMO

Multi-drug resistance (MDR) is a curious bottleneck in cancer research and chemotherapy, whereby some cells rapidly adapt to the tumor microenvironment via a myriad of heterogeneous metabolic activities. Despite being a major impediment to treatment, there is a silver lining: control over metabolic regulation could be an effective approach to overcome or correct resistance pathways. In this critical review, we comprehensively and carefully curated and analyzed large networks of previously identified proteins associated with metabolic adaptation in MDR. We employed data and text mining to study and categorize more than 600 studies in PubMed, with particular focus on AMPK, a central and fundamental modulator in the energy metabolism network that has been specifically implicated in cancer MDR pathways. We have identified one protein set of metabolic adaptations with 137 members closely related to cancer MDR processes, and a second protein set with 165 members derived from AMPK-based networks, with 28 proteins found at the intersection between the two sets. Furthermore, according to genomics analysis of the cancer genome atlas (TCGA) provisional data, the highest alteration frequency (80.0%) of the genes encoding the intersected proteins (28 proteins), ranked three cancer types with quite remarkable significance across 166 studies. The hierarchical relationships of the entire identified gene and protein networks indicate broad correlations in AMPK-mediated metabolic regulation pathways, which we use decipher and depict the metabolic roles of AMPK and demonstrate the potential of metabolic control for therapeutic intervention in MDR.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia
14.
J Sep Sci ; 40(24): 4730-4739, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29068139

RESUMO

Methanol and water are commonly used solvents for chemical analysis and traditional decoction, respectively. In the present study, a high-performance liquid chromatography with ultraviolet detection method was developed to quantify 11 saponins in Panax notoginseng flower extracted by aqueous solution and methanol, and chemical components and anti-inflammatory effects of these two extracts were compared. The separation of 11 saponins, including notoginsenoside Fc and ginsenoside Rc, was well achieved on a Zorbax SB C18 column. This developed method provides an adequate linearity (r2  > 0.999), repeatability (RSD < 4.26%), inter- and intraday variations (RSD < 3.20%) with recovery (94.7-104.1%) of 11 saponins concerned. Our data indicated that ginsenoside biotransformation in PNF was found, when water was used as the extraction solvent, but not methanol. Specifically, the major components of Panax notoginseng flower, ginsenosides Rb1, Rc, Rb2, Rb3, and Rd, can be near completely transformed to the minor components, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, notoginsenoside Fd, and ginsenoside F2, respectively. Total protein isolated from Panax notoginseng flower is responsible for this ginsenoside biotransformation. Additionally, methanol extract exerted the stronger anti-inflammatory effects than water extract in lipopolysaccharide-induced RAW264.7 cells. This difference in anti-inflammatory action might be attributed to their chemical difference of saponins.


Assuntos
Anti-Inflamatórios/farmacologia , Flores/química , Ginsenosídeos/farmacologia , Panax notoginseng/química , Extratos Vegetais/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Ginsenosídeos/isolamento & purificação , Metanol , Camundongos , Células RAW 264.7 , Água
15.
Phytomedicine ; 130: 155684, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788391

RESUMO

BACKGROUND: Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE: Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN: In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS: Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS: More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION: Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Plantas Medicinais , Humanos , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Produtos Biológicos/farmacologia , Anti-Inflamatórios/farmacologia , Plantas Comestíveis/química , Animais
16.
Drug Discov Today ; 29(3): 103885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278476

RESUMO

Bioaffinity drug screening strategies have gained popularity in preclinical and clinical drug discovery for natural products, small molecules and antibodies owing to their superior selectivity, the large number of compounds to be screened and their ability to minimize the time and expenses of the drug discovery process. This paper provides a systematic summary of the principles of commonly used bioaffinity-based screening methods, elaborates on the success of bioaffinity in clinical drug development and summarizes the active compounds, preclinical drugs and marketed drugs obtained through affinity screening methods. Owing to the high demand for new drugs, bioaffinity-guided screening techniques will play a greater part in clinical drug development.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Anticorpos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos
17.
Medicine (Baltimore) ; 103(25): e38597, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905386

RESUMO

Breast invasive carcinoma (BRCA) is one of the most common cancers in women, with its malignant progression significantly influenced by intracellular fatty acid (FA) desaturation. Stearoyl-coenzyme A desaturase (SCD) and fatty acid desaturase 2 (FADS2) are two key rate-limiting enzymes that catalyze the FA desaturation process and cooperate to accelerate lipid metabolic activities. In this study, we investigated the potential functions of SCD and FADS2 in BRCA using bioinformatic analysis and experimental validation. The gene expression profiling interactive analysis database showed that the expression of SCD or FADS2 genes was positively linked to worse overall survival and disease-free survival in the Cancer Genome Atlas database-BRCA. The University of Alabama at Birmingham cancer data analysis portal database indicates that the expression and methylation levels of SCD or FADS2 are associated with various clinicopathological factors in patients with BRCA. Moreover, the tumor immune estimation resource and TISCH databases showed a significant positive correlation between the expression of SCD and the abundance of CD8+ T cells and macrophage cell infiltration, while the expression of FADS2 was positively correlated with the abundance of B cells. Meanwhile, SCD or FADS2 had a higher expression in monocytes/macrophages analyzed the BRCA_GSE143423 and BRCA_GSE114727_inDrop datasets. Mechanistically, the Search Tool for the Retrieval of Distant Genes and CancerSEA databases showed that SCD and FADS2 were upregulated in several cell biology signaling pathways, particularly in inflammation, apoptosis, and DNA repair. Finally, SCD or FADS2 knockdown inhibited the proliferation of MCF-7 and MDA-MB-231 cells. In summary, SCD and FADS2 play significant roles in BRCA development, suggesting that they may serve as potential therapeutic targets for BRCA treatment.


Assuntos
Neoplasias da Mama , Ácidos Graxos Dessaturases , Microambiente Tumoral , Humanos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Mutação , Regulação Neoplásica da Expressão Gênica
18.
J Ethnopharmacol ; 319(Pt 3): 117325, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852340

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Guizhi Wuwu Decoction (HGWD), a classical Chinese formula originally recorded in Jin Kui Yao Lue, was used for the treatment of human "blood impediment" (a type of "Bi" syndrome). In clinical practice, HGWD has been applied to treat rheumatoid arthritis (RA). AIM OF THE STUDY: The characterization of chemical markers reflecting both efficacy and chemical characteristics is of great significance for TCM quality control. With the anti-RA effects of HGWD as an example, the aim of this study was to develop a comprehensive strategy combining the overall chemical profile and biological activity data to identify chemical markers. MATERIALS AND METHODS: First, an ultra-performance liquid chromatography-diode array detector (UPLC-DAD) fingerprint was established and validated to evaluate the holistic quality of HGWD of different origins. Characteristic markers associated with HGWD from different geographical origins were screened by a combination of UPLC-DAD fingerprint and chemometrics methods. Second, the chemical profiles of the 15 batches of HGWD samples were characterized by UPLC coupled tohybrid linear ion trap-Orbitrap mass spectrometry (UPLC-HRMS). The in vitro anti-RA activities of the 15 HGWD samples were then evaluated. Third, spectrum-effect relationship analysis was performed to identify bioactive compounds that could potentially be used as quality markers. Finally, a UPLC-triple quadrupole tandem mass spectrometry approach was optimized and established for quantitative analysis of the characteristic and quality markers in 15 batches of HGWD. RESULTS: In total, 30 common peaks were assigned in the UPLC-DAD fingerprint. Nine peaks were recognized and considered characteristic markers: protocatechuic acid, coumarin, cinnamic acid, oxypaeoniflorin, paeoniflorin, calycosin, formononetin, catechin, and albiflorin. Furthermore, ninety-five common compounds were identified in the UPLC-HRMS chemical profile. The pharmacological analysis indicated that the anti-RA activities of the 15 HGWD samples were vastly different. The spectrum-effect relationship analysis revealed 30 potential bioactive constituents positively correlated with anti-RA activity. Among them, five compounds with relative amounts >1%, paeoniflorin, astragaloside IV, hexahydrocurcumin, formononetin and calycosin-7-glucoside, were selected as quality markers, and their activity was verified in LPS-induced RAW264.7 macrophages. Finally, the above 12 representative components were simultaneously quantified in the 15 batches of HGWD samples. CONCLUSION: Combining a holistic chemical profile with representative component evaluation, this systematic strategy could be a reliable and effective method to improve quality evaluations of HGWD.


Assuntos
Artrite Reumatoide , Quimiometria , Humanos , Glucosídeos , Monoterpenos , Artrite Reumatoide/tratamento farmacológico , Cromatografia Líquida
19.
Aging Dis ; 15(2): 640-697, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450923

RESUMO

Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.


Assuntos
Produtos Biológicos , Neoplasias , Animais , Humanos , Genes myc , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/genética , Produtos Biológicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Transdução de Sinais , Neoplasias/tratamento farmacológico
20.
Heliyon ; 10(10): e31514, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818184

RESUMO

The gastrointestinal tract is an important part of the human immune system. The gut microbiome, which constitutes a major component of the gastrointestinal tract, plays a crucial role in maintaining normal physiological functions and influences the development, diagnosis, and immunotherapy of colorectal cancer (CRC). Natural polysaccharides can be extracted from animals, plants, and traditional Chinese medicines. They serve as an essential energy source for the gut microbiome, promoting probiotic proliferation and regulating the intestinal microecological balance. Moreover, polysaccharides exhibit anti-tumor effects due to their immune regulatory functions and low toxicity. This review focuses on discussing these anti-tumor effects in CRC, along with improving gut microbiome dysbiosis and regulating the tumor immune microenvironment, providing evidence for effective therapeutic strategies against CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA