Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270573

RESUMO

Since the large-scale outbreak of porcine epidemic diarrhoea (PED) in 2010, caused by the genotype 2 (G2) variant of the porcine epidemic diarrhoea virus (PEDV), pig farms in China, even those vaccinated with the G2b vaccine, have experienced infections from the G2a variant, leading to significant economic losses. This study successfully isolated the G2a strain DY2020 from positive small intestine contents (SICs) by blind passage on Vero cells for four generations. The SICs were taken from Daye, Hubei Province, China. The biological characteristics were identified by indirect immunofluorescence assay (IFA) and transmission electron microscopy (TEM). The growth kinetics of the strain on Vero cells were detected by TCID50, and the virus titre could reach 107.35 TCID50 ml-1 (SD: 5.07×106). The pathogenicity towards colostrum-deprived piglets was conducted by assessing faecal viral shedding, morphometric analysis of intestinal lesions, and immunohistochemical staining. The results showed that DY2020 was highly virulent to colostrum-deprived piglets, with severe watery diarrhoea and other clinical symptoms appeared at 6 h post-infection (h p.i.), and all died within 30 h. Pathological tissue examination results showed that the lesions mainly occurred in the intestines of piglets, causing pathological changes such as shortening of intestinal villi. In summary, the discovery of the G2a strain DY2020 in this study is of great significance for understanding Hubei PEDV and provides an important theoretical basis for the development of new efficient PEDV vaccines.


Assuntos
Vírus da Diarreia Epidêmica Suína , Chlorocebus aethiops , Animais , Suínos , Virulência , Células Vero , China , Diarreia/veterinária
2.
J Virol ; 97(7): e0065623, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338411

RESUMO

Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.


Assuntos
Vacina Antirrábica , Raiva , Camundongos , Animais , Raiva/prevenção & controle , Plasmócitos , Imunidade Humoral , Vancomicina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Anticorpos Antivirais , Serina-Treonina Quinases TOR , Ácidos Graxos Voláteis , Butiratos
3.
Microb Pathog ; 191: 106678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718954

RESUMO

A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to ß-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.


Assuntos
Antibacterianos , Genoma Bacteriano , Cabras , Pulmão , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S , Fatores de Virulência , Animais , Cabras/microbiologia , RNA Ribossômico 16S/genética , Camundongos , Antibacterianos/farmacologia , Pulmão/microbiologia , Pulmão/patologia , Fatores de Virulência/genética , Doenças das Cabras/microbiologia , Sequenciamento Completo do Genoma , Filogenia , Virulência , Farmacorresistência Bacteriana , DNA Bacteriano/genética
4.
Appl Environ Microbiol ; 89(1): e0184122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475883

RESUMO

Streptococcus suis is a major swine pathogen that is increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role during the process of bacterial infection. In this study, RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular copper homeostasis. CopA was identified as the primary copper exporter in S. suis. The copA deletion mutant strain was found to be more sensitive to copper and accumulated more intracellular copper than the wild-type (WT) parent strain. In addition, adding manganese increased the ability of S. suis to resist copper, and the manganese transporter, TroABCD, was involved in tolerance to copper. The copA deletion mutant strain accumulated less copper when supplemented with manganese. Furthermore, when cultured with copper, the double deletion mutant (ΔcopAΔtroA) exhibited improved growth compared to the copA deletion mutant strain. In addition, the double deletion mutant (ΔcopAΔtroA) accumulated less copper than the copA deletion mutant strain. These data were consistent with a model wherein defective TroABCD resulted in decreased cellular copper accumulation and protected the strain against copper poisoning. IMPORTANCE Metal homeostasis plays a critical role during the process of bacterial infection. We identified three important potential candidate genes involved in maintenance of intracellular copper homeostasis. CopA was demonstrated to be the main copper exporter in Streptococcus suis, and manganese increased the tolerance of S. suis to copper. The double deletion mutant (ΔcopAΔtroA) improved growth ability over the copA deletion mutant strain in the presence of high concentrations of copper and accumulated less copper. These findings are consistent with a model wherein defective TroABCD resulted in decreased cellular accumulation of copper and protected the strain against copper poisoning.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Cobre/toxicidade , Streptococcus suis/genética , Proteínas de Bactérias/genética , Manganês , Mutação , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
5.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511601

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins ß-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus , Infecções por Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Receptor 4 Toll-Like/metabolismo , Junções Íntimas , Pulmão/microbiologia , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Chá/metabolismo , Doenças dos Suínos/microbiologia
6.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108608

RESUMO

Streptococcus suis (S. suis) is one of the most important zoonotic pathogens that threaten the lives of pigs and humans. Even worse, the increasingly severe antimicrobial resistance in S. suis is becoming a global issue. Therefore, there is an urgent need to discover novel antibacterial alternatives for the treatment of S. suis infection. In this study, we investigated theaflavin (TF1), a benzoaphenone compound extracted from black tea, as a potential phytochemical compound against S. suis. TF1 at MIC showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. TF1 had no cytotoxicity and decreased adherent activity of S. suis to the epithelial cell Nptr. Furthermore, TF1 not only improved the survival rate of S. suis-infected mice but also reduced the bacterial load and the production of IL-6 and TNF-α. A hemolysis test revealed the direct interaction between TF1 and Sly, while molecular docking showed TF1 had a good binding activity with the Glu198, Lys190, Asp111, and Ser374 of Sly. Moreover, virulence-related genes were downregulated in the TF1-treated group. Collectively, our findings suggested that TF1 can be used as a potential inhibitor for treating S. suis infection in view of its antibacterial and antihemolytic activity.


Assuntos
Biflavonoides , Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Camundongos , Simulação de Acoplamento Molecular , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Antibacterianos/uso terapêutico , Proteínas Hemolisinas/metabolismo
7.
Appl Environ Microbiol ; 88(9): e0008622, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35465691

RESUMO

Streptococcus suis has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role in the antioxidative capability of bacteria, thus facilitating the escape of pathogenic species from the innate immunity systems of hosts. Here, we revealed that manganese increased the ability of S. suis to resist oxidative stress. RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular manganese homeostasis. Four genes, termed troABCD, were identified by NCBI BLASTp analysis. The troA, troB, troC, and troD deletion mutant strains exhibited decreased intracellular manganese content and tolerance to H2O2 compared to the wild-type strain. Thus, troABCD were determined to be involved in manganese uptake and played an important role in H2O2 tolerance in S. suis. Furthermore, the inactivation of perR increased the survival of H2O2-pulsed S. suis 2.18-fold and elevated the intracellular manganese content. H2O2-pulsed S. suis and perR deletion mutants upregulated troABCD. This finding suggested that H2O2 released the suppression of troABCD by perR. In addition, an electrophoretic mobility shift assay (EMSA) showed that PerR at 500 ng binds to the troABCD promoter, indicating that troABCD were directly regulated by PerR. In conclusion, this study revealed that manganese increases tolerance to H2O2 by upregulating the expression of troABCD. Moreover, PerR-regulated Mn import in S. suis and increased the tolerance of S. suis to oxidative stress by regulating troABCD. IMPORTANCE During infection, it is extremely important for bacteria to defend against oxidative stress. While manganese plays an important role in this process, its role is unclear in S. suis. Here, we demonstrated that manganese increased S. suis tolerance to oxidative stress. Four manganese ABC transporter genes, troABCD, were identified. Oxidative stress increased the content of manganese in the cell. Furthermore, PerR increased the tolerance to oxidative stress of S. suis by regulating troABCD. Manganese played an important role in bacterial defense against oxidative stress. These findings provide novel insight into the mechanism by which S. suis resists oxidative stress and approaches to inhibit bacterial infection by limiting manganese intake.


Assuntos
Streptococcus suis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Streptococcus suis/genética , Streptococcus suis/metabolismo , Suínos
8.
Microb Pathog ; 164: 105421, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114350

RESUMO

Streptococcus suis (SS) is an important pathogen in pigs and can also cause severe infection in humans. Currently, more and more drug resistance is reported, resulting in the search for new drugs being needed urgently. Green tea polyphenols (GTP) was reported to inhibit many bacteria. However, SS response to GTP has not been studied before. In this report, the effect of GTP on growth, cell integrity, pathogenicity and metabolic pathway of SS was examined. The GTP inhibited growth, led to cellular damage, and attenuated pathogenicity of SS. Finally, GTP affected many important metabolic pathways of SS, such as ABC transporters, pyrimidine metabolism, protein digestion and absorption. The results provide new insight into the prevention and control of SS infection.


Assuntos
Streptococcus suis , Animais , Metabolômica , Polifenóis/farmacologia , Suínos , Chá , Virulência
9.
Microb Pathog ; 158: 105118, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339795

RESUMO

Porcine circovirus type 2 (PCV2) can cause various clinical diseases in pigs, resulting in huge losses for the pig farms all over the world. In order to develop a new strategy to control PCV2, it is essential to understand its mechanisms firstly, especially PCV2 interferes with the host's innate immunity. In the present study, lncRNA and mRNA expression profiles in porcine lymphnode response to PCV2 infection were deeply sequenced and analyzed. 3271 novel lncRNAs were identified in all. 1898 mRNAs and 282 lncRNAs showed differential expression between control and PCV2-infected groups. The bioinformatics analysis including lncRNA-mRNA co-expression network construction, as well as GO and KEGG pathway analysis focused on the DEGs was carried out. The results indicated that lncRNAs might participate in PCV2 infection-induced the pathogenesis of immunosuppression through regulating the host's immune responses, biological regulation, response to stimulus, cellular component organization or biogenesis and metabolism. And these differentially expressed lncRNAs might play important roles in response to PCV2 infection in the host's innate immune system. These findings provided a large-scale survey of dysregulated lncRNAs after PCV2 infection, especially the lncRNAs responded to host's innate immune within the lymphnode. This study will provide a novel insight into the lncRNAs' functions and the possible immunosuppressive mechanism induced by PCV2 infection. However, further research will be required to verify the characteristic function of the dysregulated lncRNAs.


Assuntos
Infecções por Circoviridae , Circovirus , RNA Longo não Codificante , Doenças dos Suínos , Animais , Infecções por Circoviridae/veterinária , Circovirus/genética , Biologia Computacional , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Suínos
10.
Microb Pathog ; 150: 104724, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33400988

RESUMO

Japaneses encephalitis (JE) is most common zoonoses caused by Japanese encephalitis virus (JEV) with a high mortality and disability rate. To take timely preventive and control measures, early and rapid detection of JE RNA is necessary. But due to characteristic brief and low viraemia, JE RNA detection remains challenging. In this study, a real-time nucleic acid sequence-based amplification (RT-NASBA) was developed for rapid and simultaneous detection of JEV. Four pairs of primer were designed using a multiple genome alignment of all JEV strains from GenBank. NASBA assay established and optimal reaction conditions were confirmed by using primers and probe on ns1 gene of JEV. The specificity and sensitivity of the assay were compared with RT-PCR by using serial RNA and virus cultivation dilutions. The results showed that JEV RT-NASBA assay was established, and robust signals could be observed in 10 min with high specificity. The limit of dectetion of RT-NASBA was 6 copies per reaction. The assay was thus 100 to 1, 000 times more sensitive than RT-PCR. The cross-reaction was performed with other porcine pathogens, and negative amplification results indicated the high specificity of this method. The novel JEV RT-NASBA assay could be used as an efficient molecular biology tool to diagnose JEV, which would facilitate the surveillance of reproductive failure disease in swine and would be beneficial for public health security.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/diagnóstico , Replicação de Sequência Autossustentável , Sensibilidade e Especificidade , Suínos , Zoonoses
11.
Microb Pathog ; 152: 104640, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33232763

RESUMO

Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) causes high levels of morbidity and mortality in neonatal piglets. Owing to the abuse of antibiotics and emergence of drug resistance, antibiotics are no longer considered only beneficial, but also potentially harmful drugs. Supplements that can inhibit the growth of bacteria are expected to replace antibiotics. Tea polyphenols have numerous important biological functions, including antibacterial, antiviral, antioxidative, anti-inflammatory, and antihypertensive effects. We investigated the role of tea polyphenols in ETEC K88 infection using a mouse model. Pretreating with tea polyphenols attenuated the symptoms induced by ETEC K88. Furthermore, in a cell adherence assay, tea polyphenols inhibited ETEC K88 adherence to IPEC-J2 cells. When cells were infected with ETEC K88, mRNA and protein levels of claudin-1 were significantly decreased compared with those of control cells. However, when cells were pretreated with tea polyphenols, claudin-1 mRNA and protein levels were higher than those in cells without pretreatment upon cell infection with ETEC K88. TLR2 mRNA levels were also higher following cell infection with ETEC K88 when cells were pretreated with tea polyphenols. These data revealed that tea polyphenols could increase the barrier integrity of IPEC-J2 cells by upregulating expression of claudin-1 through activation of TLR2. Tea polyphenols had beneficial effects on epithelial barrier function. Therefore, tea polyphenols could be used as a novel strategy to control and treat pig infections caused by ETEC K88.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Infecções por Escherichia coli/tratamento farmacológico , Polifenóis/farmacologia , Suínos , Chá , Virulência
12.
Environ Sci Technol ; 54(16): 10261-10269, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32806915

RESUMO

Transition-metal-activated sulfite [S(IV)] processes for water decontamination have recently received intense attention in the field of decontamination by advanced oxidation processes (AOPs). However, the drawback with respect to the secondary metal sludge contamination involved in various AOPs has been argued often. In this work, we developed a novel electro-sulfite (ES) process using stable and low-cost graphite electrodes to address that concern. Arsenite [As(III)] was used as the target compound for removal by the ES process because of its wide presence and high toxicity. Parameters, including cell voltage, S(IV) concentration, solution pH, and water matrix, and the mechanisms for reactions on anode and cathode were investigated in electrolytic cells containing one or two compartments, respectively. The results show that the ES process using 1 mM S(IV) and 2 V cell voltage oxidizes 5 µM As(III) at a rate of 0.127 min-1, which is 15-fold higher than mere electrolysis without S(IV) addition (0.008 min-1) at pH 7. Further studies using radical scavengers and electron spin resonance assays demonstrated that oxysulfur radicals (i.e., SO5•- and SO4•-) and HO• are responsible for As(III) oxidation in the ES process. However, HO2• produced via the oxygen reduction reaction in the EO process plays a major role in As(III) oxidation, which explains the lower reaction rate in the absence of S(IV). The effectiveness of the ES process was moreover evidenced by 60-82% As(III) oxidation in field water within 40 min. Overall, this work realizes the metal-free activation of S(IV) and significantly leverages the S(IV)-based water treatment technologies.


Assuntos
Grafite , Poluentes Químicos da Água , Purificação da Água , Eletrodos , Metais , Oxirredução , Sulfitos , Água
13.
Microb Pathog ; 126: 92-100, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30385395

RESUMO

Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP) and responsible for major economic losses in global swine industry. After colonization of the respiratory epithelium, M. hyopneumoniae elicits a general mucociliary clearance loss, prolonged inflammatory response, host immunosuppression and secondary infections. Until now, the pathogenesis of M. hyopneumoniae is not completely elucidated. This present study explores the pathogenicity of mhp390 (P68, a membrane-associated lipoprotein) by elucidating its multiple functions. Microtitrer plate adherence assay demonstrated that mhp390 is a new cilia adhesin that plays an important role in binding to swine tracheal cilia. Notably, mhp390 could induce significant apoptosis of lymphocytes and monocytes from peripheral blood mononuclear cells (PBMCs), as well as primary alveolar macrophages (PAMs), which might weaken the host immune response. In addition, mhp390 contributes to the production of proinflammatory cytokines, at least partially, via the release of IL-1ß and TNF-α. To the best of our knowledge, this is the first report of the multiple functions of M. hyopneumoniae mhp390, which may supplement known virulence genes and further develop our understanding of the pathogenicity of M. hyopneumoniae.


Assuntos
Adesinas Bacterianas , Apoptose , Cílios/microbiologia , Inflamação/imunologia , Lipoproteínas/imunologia , Proteínas de Membrana/imunologia , Mycoplasma hyopneumoniae/imunologia , Fatores de Virulência/imunologia , Adesinas Bacterianas/genética , Animais , Caspase 3/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Leucócitos Mononucleares , Lipoproteínas/genética , Macrófagos Alveolares , Proteínas de Membrana/genética , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/patogenicidade , Coelhos , Suínos , Traqueia/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência/genética , Fatores de Virulência/genética
14.
BMC Infect Dis ; 19(1): 778, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488066

RESUMO

BACKGROUND: A diagnostic method to simultaneously detect and discriminate porcine circovirus type 1 (PCV1), porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3) in clinical specimens is imperative for the differential diagnosis and monitoring and control of PCVs in the field. METHODS: Three primer pairs were designed and used to develop a multiplex PCR assay. And 286 samples from 8 farms in Hubei province were tested by the developed multiplex PCR assay to demonstrate the accuracy. RESULTS: Each of target genes of PCV1, PCV2 and PCV3 was amplified using the designed primers, while no other porcine viruses genes were detected. The limit of detection of the assay was 10 copies/µL of PCV1, PCV2 OR PCV3. The results of the tissue samples detection showed that PCV1, PCV2 and PCV3 are co-circulating in central China. The PCV1, PCV2 and PCV3 singular infection rate was 52.4% (150/286), 61.2% (175/286) and 45.1% (129/286), respectively, while the PCV1 and PCV2 co-infection rate was 11.2% (32/286), the PCV1 and PCV3 co-infection rate was 5.9% (17/286), the PCV2 and PCV3 co-infection rate was 23.4% (67/286), and the PCV1, PCV2 and PCV3 co-infection rate was 1.7% (5/286), respectively, which were 100% consistent with the sequencing method and real-time PCR methods. CONCLUSIONS: The multiplex PCR assay could be used as a differential diagnostic tool for monitoring and control of PCVs in the field. The results also indicate that the PCVs infection and their co-infection are severe in Hubei province, Central China.


Assuntos
Infecções por Circoviridae/diagnóstico , Circovirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Animais , China , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/genética , Diagnóstico Diferencial , Genes Virais , Incidência , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/epidemiologia , Virologia/métodos
15.
Microb Pathog ; 122: 151-155, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29894809

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea and dehydration in new-born piglets with subsequent economic losses to swine industry. In the current study, gene encoding of 381aa-792aa spike protein (S1) with the main epitope relative to virus neutralization of PEDV was amplified by RT-PCR and inserted into vector pET-30A(+). The plasmid was transferred into Escherichia coli BL21 (DE3). Meanwhile, recombinant protein expression was induced by isopropy1-ß-galactopyranoside (IPTG). After denaturation and renaturation of inclusion bodies, the S1 protein was obtained by using purified recombinant S1 protein in immunized female BALB/c mice. Monoclonal antibodies (MAb) against S1 protein, named 4C7 by hybridoma technique were gained successfully. The result showed that MAb can specifically respond to S1 protein and PEDV via ELISA, Western bolt and immunofluorescence assay methods. A sandwich ELISA (S-ELISA) was established by using the captured monoclonal antibodies 4C7. The sensitivity and specificity were compared between S-ELISA and RT-PCR, which showed similar sensitivity and specificity. This work indicated that S-ELISA would be a significant tool alongside a specific diagnostic reagent for PEDV in future.


Assuntos
Infecções por Coronavirus/veterinária , Testes Diagnósticos de Rotina/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Fezes/virologia , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Western Blotting , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos
16.
Microb Pathog ; 104: 137-145, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28093234

RESUMO

Streptococcus suis serotype 2 is a major zoonotic pathogen, and the two-component system plays an important role in bacterial pathogenesis. The present study targeted the 1910HK/RR two-component system of S. suis 2. A 1910HK/RR deletion mutant (Δ1910HK/RR) and the corresponding complementation strain (CΔ1910HK/RR) were constructed in S. suis 2 strain 05ZYH33. 1910HK/RR deletion had no effect on S. suis 2 growth, but significantly inhibited the adherence and invasion of S. suis 2 to HEp-2 cells. Analysis of the role of 1910HK/RR in murine and pig infection models demonstrated that 1910HK/RR played a distinct role in the virulence of S. suis 2. In addition, deletion of 1910HK/RR significantly impaired the survival of 05ZYH33 in human blood. These data provided important insights into the pathogenesis of S. suis 2.


Assuntos
Ilhas Genômicas , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Animais , Aderência Bacteriana/genética , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Ordem dos Genes , Teste de Complementação Genética , Loci Gênicos , Genoma Bacteriano , Humanos , Camundongos , Viabilidade Microbiana , Deleção de Sequência , Sorogrupo , Infecções Estreptocócicas/mortalidade , Infecções Estreptocócicas/patologia , Streptococcus suis/classificação , Streptococcus suis/crescimento & desenvolvimento , Suínos , Virulência/genética
17.
Environ Sci Technol ; 51(21): 12663-12671, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28990766

RESUMO

Disinfection is an indispensable process in wastewater treatment plants. New bacterial inactivation technologies are of increasing interest and persistent demand. A category of simple and efficient bactericidal systems have been established in this study, that is, the combination of divalent transition metal (Mn(II), Co(II), Fe(II), or Cu(II)) and sulfite. In these systems, metal catalyzed auto-oxidation of sulfite was manifested to generate reactive intermediary SO4•- that played the major role in Escherichia coli inactivation at pH 5-8.5. Increasing concentrations of metal ion or sulfite, and lower pH, led to higher bacterial deaths. Bacterial inactivation by Me(II)/sulfite systems was demonstrated to be a surface-bound oxidative damage process through destructing vital cellular components, such as NADH and proteins. Additionally, the developed Me(II)/sulfite systems also potently killed other microbial pathogens, that is, Pseudomonas aeruginosa, Bacillus subtilis, and Cu(II)-antibiotic-resistant E. coli. The efficacy of Me(II)/sulfite in treating real water samples was further tested with two sewages from a wastewater treatment plant and a natural lake water body, and Cu(II)/sulfite and Co(II)/sulfite rapidly inactivated viable bacteria regardless of bacteria species and cell density, therefore holding great promises for wastewater disinfection.


Assuntos
Escherichia coli , Sulfitos , Águas Residuárias , Oxirredução , Elementos de Transição
18.
Virus Res ; 346: 199396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763299

RESUMO

Porcine circovirus type 2 (PCV2) infection leads to multi-system inflammation in pigs, and this effect can be achieved by upregulating host miR-21. The underlying mechanism of miR-21 regulates PCV2-induced inflammation is already known, however, how PCV2 regulates miR-21 levels and function using both autonomic and host factors remains to be further revealed. Here we present the first evidence that PCV2 ORF5 induces an inflammatory response by up-regulating miR-21 level through targeting nuclear miR-30d. In this study, we found that overexpression of ORF5 significantly increased miR-21 level and promoted the expression of inflammatory cytokines and activation of the NF-κB pathway, while ORF5 mutation had the opposite effect. Moreover, the differential expression of miR-21 could significantly change the pro-inflammatory effect of ORF5, indicating that ORF5 promotes inflammatory response by up-regulating miR-21. Bioinformatics analysis and clinical detection found that nuclear miR-30d was significantly down-regulated after ORF5 overexpression and PCV2 infection, and targeted pri-miR-21 and PCV2 ORF5. Functionally, we found that miR-30d inhibited the levels of miR-21 and inflammatory cytokines in cells. Mechanistically, we demonstrated that ORF5 inhibits miR-30d expression levels through direct binding but not via the circRNA pathway, and miR-30d inhibits miR-21 levels by targeting pri-miR-21. In summary, the present study revealed the molecular mechanism of ORF5 upregulation of miR-21, further refined the molecular chain of PCV2-induced inflammatory response and elucidated the role of miRNAs in it.


Assuntos
Infecções por Circoviridae , Circovirus , Inflamação , MicroRNAs , Regulação para Cima , Circovirus/genética , Circovirus/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Suínos , Infecções por Circoviridae/virologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/genética , Inflamação/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/genética , Citocinas/metabolismo , Citocinas/genética , Linhagem Celular , Interações Hospedeiro-Patógeno , NF-kappa B/metabolismo , NF-kappa B/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
J Chem Phys ; 139(16): 166101, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24182088

RESUMO

The photodissociation dynamics of carbon dioxide cation, CO2(+), mediated by its different Ã(2)Πu,1/2(υ1,υ2,0) vibronic states has been investigated by means of time-sliced velocity map imaging. Through analysis of the recorded translational energy release spectra of photofragment CO(+), we found that the photodissociation of CO2(+) exhibits drastic change in a rather narrow energy region. A conformational barrier in the CO2(+)(Ã(2)A1) state is suggested to be ∼5600 cm(-1) relative to the CO2(+)(Ã(2)Πu,1/2(0,0,0)) state, in reasonable agreement with previous prediction.

20.
Viruses ; 15(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851748

RESUMO

Japanese encephalitis virus (JEV) infection causes host endoplasmic reticulum stress (ERS) reaction, and then induces cell apoptosis through the UPR pathway, invading the central nervous system and causing an inflammation storm. The endoplasmic reticulum stress inhibitor, 4-phenyl-butyric acid (4-PBA), has an inhibitory effect on the replication of flavivirus. Here, we studied the effect of 4-PBA on JEV infection both in vitro and vivo. The results showed that 4-PBA treatment could significantly decrease the titer of JEV, inhibit the expression of the JEV NS3 protein (in vitro, p < 0.01) and reduce the positive rate of the JEV E protein (in vivo, p < 0.001). Compared to the control group, 4-PBA treatment can restore the weight of JEV-infected mice, decrease the level of IL-1ß in serum and alleviate the abnormalities in brain tissue structure. Endoplasmic reticulum stress test found that the expression level of GRP78 was much lower and activation levels of PERK and IRE1 pathways were reduced in the 4-PBA treatment group. Furthermore, 4-PBA inhibited the UPR pathway activated by NS3, NS4b and NS5 RdRp. The above results indicated that 4-PBA could block JEV replication and inhibit ER stress caused by JEV. Interestingly, 4-PBA could reduce the expression of NS5 by inhibiting transcription (p < 0.001), but had no effect on the expression of NS3 and NS4b. This result may indicate that 4-PBA has antiviral activity independent of the UPR pathway. In summary, the effect of 4-PBA on JEV infection is related to the inhibition of ER stress, and it may be a promising drug for the treatment of Japanese encephalitis.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Animais , Camundongos , Ácido Butírico , Encefalite Japonesa/tratamento farmacológico , Estresse do Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA