Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(22): 7660-7671, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219917

RESUMO

The resistance of cancer cells to anticancer drugs has been recognized as one of the main reasons for chemotherapy failure. Multidrug combination therapy is one of the most effective ways to solve this problem. Therefore, in this article, we designed and synthesized a pH/GSH dual-responsive camptothecin/doxorubicin (CPT/DOX) dual pro-drug synergistic treatment system with the aim of overcoming the resistance of non-small cell lung cancer A549/ADR cells to DOX. The pro-drug cRGD-PEOz-S-S-CPT (cPzT) was obtained by linking CPT to poly(2-ethyl-2-oxazoline) (PEOz) with endosomal escape properties through a GSH-responsive disulfide bond and modifying it with the targeted peptide cRGD. The pro-drug mPEG-NH-N=C-DOX (mPX) was synthesized by attaching DOX to polyethylene glycol (PEG) through acid-sensitive hydrazone bonds. The dual pro-drug micelles cPzT/mPX configured according to the CPT/DOX mass ratio of 3:1 showed a strong synergistic therapeutic effect at IC50 with a combined therapy index CI = 0.49, far less than 1. Moreover, with the further improvement of the inhibition rate, the 3:1 ratio showed a stronger synergistic therapeutic effect than other ratios. The cPzT/mPX micelles not only had better targeted uptake ability but also showed a better therapeutic effect in both 2D and 3D tumor suppression assays relative to free CPT/DOX and significantly enhanced the penetration ability into solid tumors. In addition, the results of confocal laser scanning microscopy (CLSM) showed that cPzT/mPX could effectively overcome the resistance of A549/ADR cells to DOX by delivering DOX into the nucleus to exert its effect. Thus, this dual pro-drug synergistic therapy system combining targeting and endosomal escape ability provides a possible strategy to overcome tumor drug resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pró-Fármacos , Humanos , Micelas , Pró-Fármacos/química , Doxorrubicina , Polietilenoglicóis/química , Camptotecina/farmacologia , Camptotecina/química , Endossomos , Concentração de Íons de Hidrogênio , Células MCF-7
2.
J Cell Mol Med ; 25(11): 5269-5282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955666

RESUMO

The blood-brain barrier (BBB) damage is a momentous pathological process of ischaemic stroke. NADPH oxidases 4 (NOX4) boosts BBB damage after ischaemic stroke and its expression can be influenced by microRNAs. This study aimed to probe into whether miR-92b influenced the BBB damage after ischaemic stroke by regulating NOX4 expression. Here, miR-92b expression was lessened in the ischaemic brains of rats and oxygen-glucose deprivation (OGD)-induced brain microvascular endothelial cells (BMECs). In middle cerebral artery occlusion (MCAo) rats, miR-92b overexpression relieved the ameliorated neurological function and protected the BBB integrity. In vitro model, miR-92b overexpression raised the viability and lessened the permeability of OGD-induced BMECs. miR-92b targeted NOX4 and regulated the viability and permeability of OGD-induced BMECs by negatively modulating NOX4 expression. The transcription factor Foxo1 bound to the miR-92b promoter and restrained its expression. Foxo1 expression was induced by OGD-induction and its knockdown abolished the effects of OGD on miR-92b and NOX4 expressions, cell viability and permeability of BMECs. In general, our findings expounded that Foxo1-induced lessening miR-92b boosted BBB damage after ischaemic stroke by raising NOX4 expression.


Assuntos
Barreira Hematoencefálica/patologia , Isquemia Encefálica/fisiopatologia , AVC Isquêmico/fisiopatologia , MicroRNAs/antagonistas & inibidores , NADPH Oxidase 4/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Apoptose , Barreira Hematoencefálica/metabolismo , Regulação da Expressão Gênica , Masculino , MicroRNAs/genética , NADPH Oxidase 4/genética , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley
3.
Mol Med ; 27(1): 39, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858325

RESUMO

OBJECTIVES: Targeted inhibition of inflammatory response can reduce diabetic cerebral ischemia-reperfusion (I/R) injure. Pyroptosis is characterized by caspase-1 dependence and the release of a large number of pro-inflammatory factors. LncRNA-Fendrr is associated with a variety of diseases, but Fendrr has not been studied in diabetic cerebral I/R. NLR-family CARD-containing protein 4 (NLRC4) regulate the pyroptosis of microglia cells. This study was designed to investigate whether Fendrr is involved in the effects of diabetic cerebral I/R injury. METHODS: The diabetic brain I/R model in mice was constructed. Mouse microglia cell line BV-2 cells were exposed to high glucose followed by hypoxia/reoxygenation (H/R). Fendrr and some pyroptosis-associated proteins were detected by qRT-PCR, western blot or ELISA. HE staining was used to detect pathological changes. Microglia pyroptosis was detected by TUNEL staining. RNA pull-down and RNA Immunoprecipitation were used to detect binding of Fendrr to HERC2 (E3 ubiquitin ligase), and CO-IP detected binding of HERC2 to NLRC4. The ubiquitination of NLRC4 was detected by ubiquitination experiments. RESULTS: Fendrr was significantly increased in the diabetic cerebral I/R model, and NLRC4 inflammatory complex and pyroptosis mediated inflammatory factors were increased. NLRC4 and inflammatory cytokines associated with pyroptosis were decreased in the high glucose-treated hypoxia/reoxygenation (H/R)-induced microglia after Fendrr knockdown. Fendrr bound to HERC2 protein, and HERC2 bound to NLRC4. Meanwhile, Fendrr could inhibit the ubiquitination of NLRC4, HERC2 promoted the ubiquitination of NLRC4 protein. Moreover, the effect of Fendrr overexpression in the diabetic cerebral I/R model of microglia can be reversed by HERC2 overexpression. CONCLUSION: Fendrr can protect against the ubiquitination and degradation of NLRC4 protein through E3 ubiquitin ligase HERC2, thereby accelerating the pyroptosis of microglia.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Diabetes Mellitus/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Infarto da Artéria Cerebral Média/genética , Microglia/metabolismo , RNA Longo não Codificante , Traumatismo por Reperfusão/genética , Animais , Encéfalo/metabolismo , Linhagem Celular , Diabetes Mellitus/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/genética , Masculino , Camundongos Endogâmicos C57BL , Piroptose , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/metabolismo , Ubiquitinação
4.
Am J Physiol Cell Physiol ; 315(1): C52-C61, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631367

RESUMO

Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was widely recognized to be implicated in human cancer, vascular diseases, and neurological disorders. This study was to explore the role and underlying mechanism of MALAT1 in acute spinal cord injury (ASCI). ASCI models in adult rats were established and demonstrated by a numerical decrease in BBB scores. Expression profile of MALAT1 and miR-199b following ASCI in rats and in vitro was determined using quantitative real-time PCR. RNA pull-down assays combined with RIP assays were performed to explore the interaction between MALAT1 and miR-199b. In the present study, MALAT1 expression was significantly increased (2.4-fold that of control) in the spinal cord of the rat contusion epicenter accompanied by activation of IKKß/NF-κB signaling pathway and an increase in the level of proinflammatory cytokines TNF-α and IL-1ß. Upon treatment with LPS, MALAT1 expression dramatically increased in the microglia in vitro, but knockdown of MALAT1 attenuated LPS-induced activation of MGs and TNF-α and IL-1ß production. Next, we confirmed that LPS-induced MALAT1 activated IKKß/NF-κB signaling pathway and promoted the production of proinflammatory cytokines TNF-α and IL-1ß through downregulating miR-199b. More importantly, MALAT1 knockdown gradually improved the hindlimb locomotor activity of ASCI rats as well as inhibited TNF-α, IL-1ß levels, and Iba-1 protein, the marker of activated microglia in injured spinal cords. Our study demonstrated that MALAT1 was dysregulated in ASCI rats and in LPS-activated MGs, and MALAT1 knockdown was expected to attenuate ASCI through repressing inflammatory response of MGs.


Assuntos
Quinase I-kappa B/genética , Inflamação/genética , MicroRNAs/genética , Microglia/fisiologia , NF-kappa B/genética , RNA Longo não Codificante/genética , Traumatismos da Medula Espinal/genética , Animais , Células Cultivadas , Citocinas/genética , Regulação para Baixo/genética , Interleucina-1beta/genética , Locomoção/genética , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/genética
5.
Bioorg Med Chem ; 26(12): 3535-3540, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29801966

RESUMO

In this paper, two novel carbamate-linked quaternary ammonium lipids (MU18: a lipid with a mono-ammonium head; GU18: a lipid with a Gemini-ammonium head) containing unsaturated hydrophobic chains were designed and synthesized. The chemical structures of the synthetic lipids were characterized by infrared spectrum, ESI-MS, 1H NMR, 13C NMR, and HPLC. For investigating the effect of unsaturation on gene delivery, the previous reported saturated cationic liposomes (MS18 and GS18) were used as comparison. Cationic liposomes were prepared by using these cationic lipids and neutral lipid DOPE at the molar ratio of 1:1. Particle sizes and zeta potentials of the cationic liposomes were studied to show that they were suitable for gene transfection. The binding abilities of the cationic liposomes were investigated by gel electrophoresis at various N/P ratios from 0.5/1 to 8/1. The results indicated that the binding ability of GU18 was much better than MU18 and the saturated cationic liposomes (MS18 and GS18). DNA transfection of these liposomes comparable to commercially available reagent (DOTAP) was achieved in vitro against Hela, HepG-2 and NCI-H460 cell lines. GU18 showed higher transfection at the N/P ratio of 3/1 than other cationic liposomes and the positive control, DOTAP. All of the liposomes presented a relatively low cytotoxicity, which was measured by MTT. Therefore, the synthetic lipids bearing unsaturated hydrophobic chains and Gemini-head could be promising candidates for gene delivery.


Assuntos
Carbamatos/química , Lipídeos/química , Lipossomos/química , Compostos de Amônio Quaternário/química , Transfecção , Cátions/química , Linhagem Celular Tumoral , Células HeLa , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
6.
Exp Cell Res ; 349(1): 60-67, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27693495

RESUMO

Inflammatory response played an important role in the progression of spinal cord injury (SCI). Several miRNAs were associated with the pathology of SCI. However, the molecular mechanism of miRNA involving in inflammatory response in acute SCI (ASCI) was poorly understood. Sprague-Dawley (SD) rats were divided into 2 groups: control group (n=6) and acute SCI (ASCI) group (n=6). The expression of miR-199b and IκB kinase ß-nuclear factor-kappa B (IKKß-NF-κB) signaling pathway were evaluated by quantitative reverse transcription-PCR (qRT-PCR) in rats with ASCI and in primary microglia activated by lipopolysaccharide (LPS). We found that downregulation of miR-199b and activation of IKKß/NF-κB were observed in rats after ASCI and in activated microglia. miR-199b negatively regulated IKKß by targeting its 3'- untranslated regions (UTR) through using luciferase reporter assay. Overexpression of miR-199b reversed the up-regulation of IKKß, p-p65, tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in LPS-treated BV2 cells assessed by western blotting analysis. In addition, BMS-345541 reversed the up-regulation effects of miR-199b inhibitor on the expression of TNF-α and IL-1ß. In the SCI rats, overexpression of miR-199b attenuated ASCI and decreased the expression of IKKß-NF-κB signaling pathway and TNF-α and IL-1ß. These results indicated that miR-199b attenuated ASCI at least partly through IKKß-NF-κB signaling pathway and affecting the function of microglia. Our findings suggest that miR-199b may be employed as therapeutic for spinal cord injury.


Assuntos
Regulação para Baixo , Quinase I-kappa B/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Doença Aguda , Animais , Feminino , Inflamação/patologia , Lipopolissacarídeos , Camundongos , MicroRNAs/genética , Microglia/patologia , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo , Regulação para Cima/genética
7.
Pituitary ; 20(4): 477-484, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28526958

RESUMO

BACKGROUND: Ectopic pituitary adenomas (EPAs) are rare, and the suprasellar cistern seems to be the most common location. At this time, no detailed original classification, diagnosis, or treatment protocols for suprasellar pituitary adenomas (SPAs) have been described. CASE DESCRIPTION: A 19-year-old man showed visual disturbances and lack of libido for 3 years, he suffered a sharp decline in vision with only light perception in the last week. Magnetic resonance imaging scans revealed a large suprasellar cystic lesion with a normal pituitary in the sella turcica. Endocrinological findings showed an extremely high prolactin level of 1250 ng/mL. Because of the sharp decline in vision, the patient underwent total removal of the suprasellar lesion using a transfrontal interhemispheric approach. The tumor pedicle originated in the lower pituitary stalk without any connection to the anterior pituitary gland in the sella turcica, while the diaphragma sellae was incomplete. Clinical and endocrinological cure criteria were fulfilled and postoperative pathology confirmed a prolactin-secreting pituitary adenoma. CONCLUSION: Ectopic suprasellar pituitary adenomas (ESPAs) are extremely rare intracranial extracerebral tumors. SPAs can be classified into three types according to their origin and their relationship with surrounding tissue. Only type III is theoretically a true ectopic, based on previous reports. Thus, ESPAs are uncommon compared to other EPAs. Our case is the first reported case of a type IIa 'E'SPA and the first description of this subtype classification until now. The pars tuberalis may be different from the pars distalis, and each subtype of adenohypophyseal cells may have different migration characteristics, which leads to different proportions of each hormone-secreting subtype in SPAs and EPAs. Transsphenoidal surgery is minimally invasive, but transcranial surgery may remain a universal option for the treatment of suprasellar lesions.


Assuntos
Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/metabolismo , Sela Túrcica/metabolismo , Animais , Humanos , Imageamento por Ressonância Magnética , Prolactinoma/diagnóstico por imagem , Prolactinoma/metabolismo
8.
Br J Neurosurg ; 29(2): 298-302, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25613300

RESUMO

Primary melanocytic tumors of the central nervous system (CNS) are rare lesions, but primary sellar tumors are rarer. Only 10 cases have been reported, and they are often misdiagnosed as pituitary macroadenoma. We report the case of a 54-year-old Chinese man who developed progressive bitemporal hemianopsia and visual loss. Magnetic resonance imaging (MRI) revealed an intrasellar and suprasellar clouded lesion adhering to the optic chiasm, hypothalamus, and hypophyseal stalk that was suspected of being a hemorrhagic pituitary macroadenoma. Because of the atypically giant, hemorrhagic, and upward-growing lesion, an initial trans-sphenoidal approach failed, and subsequent transfrontal craniotomy was adopted to achieve macroscopically complete resection. Histopathologic findings revealed a benign melanocytic tumor. Despite an extensive search, no other primary or secondary site was found. Considering the relatively benign lesion, effective surgery, and potential significant consequences of radiotherapy, the patient received no further treatment and is still alive at the 7-year follow-up. Primary sellar melanocytic tumors are exceptional lesions that are difficult to diagnose before operating and/or obtaining pathological findings. The pathological classification and extent of surgical resection may play a key role in the prognosis. Once this type of lesion is suspected, the transfrontal approach may achieve preferable exposure and resection. Complete surgical resection may be sufficient for relatively benign lesions; otherwise, stereotactic fractionated radiotherapy is indicated. More cases should be reported to improve the treatment strategy.


Assuntos
Adenoma/diagnóstico , Hemianopsia/diagnóstico , Neoplasias Hipofisárias/diagnóstico , Adenoma/cirurgia , Diagnóstico Diferencial , Hemianopsia/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/cirurgia , Prognóstico , Sela Túrcica/cirurgia
9.
Chem Biol Interact ; 387: 110807, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37980971

RESUMO

This study aimed to treat diabetic cerebral ischemia-reperfusion injury (CI/RI) by affecting blood brain barrier (BBB) permeability and integrity. The CI/RI model in DM mice and a high glucose (HG) treated oxygen and glucose deprivation/reoxygenation (OGD/R) brain endothelial cell model were established for the study. Evans blue (EB) staining was used to evaluate the permeability of BBB in vivo. TTC staining was used to analyze cerebral infarction. The location and expression of tribbles homolog 3 (TRIB3) in endothelial cells were detected by immunofluorescence. Western blotting was used to detect the protein expressions of TRIB3, tight junction molecules, adhesion molecules, phosphorylated protein kinase B (p-AKT) and AKT. The levels of pro-inflammatory cytokines were detected by qRT-PCR. Trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran were used to measure vascular permeability in vitro. TRIB3 ubiquitination and acetylation levels were detected. Acetyltransferase bound to TRIB3 were identified by immunoprecipitation. TRIB3 was localized in cerebral endothelial cells and was highly expressed in diabetic CI/R mice. The BBB permeability in diabetic CI/R mice and HG-treated OGD/R cells was increased, while the junction integrity was decreased. Interference with TRIB3 in vitro reduces BBB permeability and increases junction integrity. In vivo interfering with TRIB3 reduced cerebral infarction volume, BBB permeability and inflammation levels, and upregulated p-AKT levels. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin reversed the effects of TRIB3-interfering plasmid. In vitro HG treatment induced TRIB3 acetylation through acetyltransferase p300, which in turn reduced ubiquitination and stabilized TRIB3. Interfering TRIB3 protects BBB by activating PI3K/AKT pathway and alleviates brain injury, which provides a new target for diabetic CI/RI.


Assuntos
Isquemia Encefálica , Diabetes Mellitus , Traumatismo por Reperfusão , Camundongos , Animais , Barreira Hematoencefálica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Infarto Cerebral/metabolismo , Oxigênio/metabolismo , Glucose/metabolismo , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Diabetes Mellitus/metabolismo
10.
Front Cell Neurosci ; 16: 956185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561497

RESUMO

Early brain injury is a series of pathophysiological changes and direct damage of brain tissue within 72 h after subarachnoid hemorrhage before cerebral vasospasm occurs. Early brain injury is a key factor affecting the prognosis of subarachnoid hemorrhage, and its possible pathological mechanisms include oxidative stress, cell apoptosis, autophagy, and immune inflammation. Microglia are important immune cells of the central nervous system. Microglia play a dual role in protection and injury. Microglia are involved in the occurrence of brain edema, the processes of neuronal apoptosis, and the blood-brain barrier disruption after subarachnoid hemorrhage (SAH) through the signaling pathways mediated by receptors such as Toll-like receptor 4 (TLR4), calcium-sensing receptor (CaSR), and triggering receptor expressed on myeloid cells-1 (TREM-1), which secrete pro-inflammatory cytokines such as interleukins and tumor necrosis factor α. Conversely, they exert their anti-inflammatory and protective effects by expressing substances such as neuroglobin and heme oxygenase-1. This article reviews the latest developments in single-cell transcriptomics for microglia in early brain injury after subarachnoid hemorrhage and its inflammatory role.

11.
Brain Pathol ; 32(5): e13070, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35338543

RESUMO

The M1 polarization of microglia and neuroinflammation restrict the treatment of acute spinal cord injury (ASCI), and long non-coding ribonucleic acid (lncRNA) maternally expressed gene 3 (MEG3) expression is lessened in ASCI. However, the function and mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI are unclear. The expressions of lncRNA MEG3 in ASCI mouse spinal cord tissues and lipopolysaccharide (LPS)-treated primary microglia and BV2 cells were quantified through a quantitative real-time polymerase chain reaction. In-vitro assays were conducted to explore the function of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. RNA degradation, RNA immunoprecipitation, RNA pull-down, cycloheximide-chase, and ubiquitination analyses were carried out to probe into the mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. The lncRNA MEG3 expression was lessened in the ASCI mouse spinal cord tissues and LPS-treated primary microglia and BV2 cells, and the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia and the neuroinflammation by regulating the NF-κB signaling pathway. For the investigation of the potential mechanism of such, the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF-κB axis and boosted the motor function recovery and neuroinflammation relief in the mice with SCI. The overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF-κB axis.


Assuntos
RNA Longo não Codificante , Traumatismos da Medula Espinal , Animais , Proteína Semelhante a ELAV 1 , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
12.
ACS Appl Mater Interfaces ; 14(18): 20616-20627, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471860

RESUMO

Nanochemotherapy is recognized as one of the most promising cancer treatment options, and the design of the carrier has a crucial impact on the final efficacy. To precisely improve the efficacy and reduce the toxicity, we combined the clinical contrast agent (Gd-DTPA) with a stimulus-sensitive o-nitrobenzyl ester and then prepared a series of nNBGD lipids by varying the carbon chain length of the hydrophobic group. The self-assembled nNBGD liposomes can be tracked by MRI to localize the aggregation of drug carriers in vivo, so as to prompt the application of light stimulation at the optimal time to facilitate the precise release of carriers at the lesion site. And the application potential of this strategy was verified with 88% tumor suppression effect in the 12NBGD-DOX+UV group. In addition, this paper emphasizes that small differences in structure can affect the overall performance of the carriers. By exploration of the differences in stability, drug loading, stimulus responsiveness, MRI imaging effect, and toxicity of the series of nNBGD carriers, the relationship between the length of the hydrophobic group of nNBGD lipids and the overall performance of the carriers is given, which provides experimental support and design reference for other carriers.


Assuntos
Doxorrubicina , Neoplasias , Meios de Contraste/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
13.
Acta Biomater ; 141: 374-387, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971788

RESUMO

Controlled-release drug carriers in cancer therapy are the most ideal way to reduce toxicity and improve drug efficacy. Since light stimulation is precise and operable, most multi-stimulation response carriers utilize phototherapy to enhance release efficiency. However, phototoxicity severely limits the application of phototherapy. Herein, we designed and synthesized a Cou-ONB lipid with sensitive fluorescence feedback and multi-stimulus response. COBL liposomes prepared from Cou-ONB lipids will passively aggregate at the tumor and guide phototherapy by fluorescence. More importantly, it can reflect the drug release effect in vivo through its own sensitive fluorescence changes, further enabling precise phototherapy and reducing phototoxicity. In this paper, the multi-stimulus superimposed response and precise fluorescence-guided performance of COBL liposomes were investigated at the molecular, liposome, cellular, and animal levels. Finally, tumor treatment experiments showed that the d-COBL-UV group had the best tumor suppression effect (5.3-fold). This paper highlights a real-time fluorescence-guided multi-stimulus superposition strategy and provides a design idea to precisely implement exogenous stimuli by displaying the degree of drug release, aiming to achieve less toxic and more efficient cancer therapy through timely and precise multi-stimulation. STATEMENT OF SIGNIFICANCE: Multi-stimulus responsive drug carriers have been extensively developed in the last decade. Visual guidance is an important tool to achieve precision medicine and precise control of drug release. However, the available visualization materials are more aimed at directing stimulation at the optimal moment. There is little discussion on when to stop exogenous stimulation and how to minimize the damage of stimulation to the patient. Here, we provide a Cou-ONB lipid that not only responds to multiple stimuli, but also provides sensitive feedback on its own dissociation with a fluorescent signal so that physicians can adjust exogenous stimuli in a timely manner. This paper provides insights to facilitate precision drug delivery systems, providing viable design ideas for precise, efficient, and less toxic cancer therapies.


Assuntos
Lipossomos , Neoplasias , Animais , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/uso terapêutico , Lipossomos/química , Neoplasias/patologia
14.
Biomater Adv ; 134: 112558, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525754

RESUMO

Cancer treatment is imminent, and controlled drug carriers are an important development direction for future clinical chemotherapy. Visual guidance is a feasible means to achieve precise treatment, reduce toxicity and increase drug efficacy. However, the existing visual control methods are limited by imaging time-consuming, sensitivity and side effects. In addition, the ability of the carrier to respond to environmental stimuli in vivo is another difficulty that limits its application. Here, we propose a highly stimulus-responsive GC liposome with precise tracing and sensitive feedback capabilities. It combines magnetic resonance imaging and fluorescence imaging, and addresses the need for precise visualization by alternating imaging modalities. More importantly, GC liposomes are a carrier that can accumulate stimuli. In this paper, by tracking the fragmentation process of empty GC and drug-loaded D-GC liposomes, we confirm the synergistic effect between multiple stimuli, which can result in a more efficient drug release performance. Finally, in mice models we examined the GC liposome imaging approach and the D-GC + UV group guided by this visualization exhibited the highest tumor inhibition efficiency (6.85-fold). This study highlights the advantages of alternate visualization-guided and co-stimulation treatment strategies, and provides design ideas and potential materials for efficient and less toxic cancer treatments.


Assuntos
Lipossomos , Neoplasias , Animais , Portadores de Fármacos , Liberação Controlada de Fármacos , Imageamento por Ressonância Magnética/métodos , Camundongos
15.
Oper Neurosurg (Hagerstown) ; 23(2): 154-163, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35838455

RESUMO

BACKGROUND: Ophthalmic segment artery aneurysms (OSAs) are difficult to clip; therefore, improvement of the surgical method is of great significance to the prevention of complications, and the classification of the aneurysms is essential to formulate a reasonable surgical plan. OBJECTIVE: To explore the strategies and effects of surgery for OSAs using a modified subdural Dolenc approach. METHODS: The clinical data of 38 patients (12 men and 26 women, aged 48-73 years) with OSA were analyzed retrospectively. A total of 44 aneurysms were identified, 40 of which were OSAs. The 40 aneurysms were divided into types Ia1 (n = 2), Ia2 (n = 2), Ib (n = 6), IIa (n = 4), IIb (n = 4), IIIa (n = 0), IIIb (n = 4), IIIc (n = 16), and IV (n = 2) based on preoperative images. Thirty-nine OSAs were operated successfully through pterional craniotomy combined with the modified subdural Dolenc approach, and 1 aneurysm was clipped through the contralateral approach. Clinical outcomes were evaluated using the Glasgow Outcome Scale (GOS). RESULTS: Thirty-nine OSAs were clipped, and one was wrapped. Visual dysfunction, headache, and dizziness improved after the operation in 18 patients. One patient had new visual impairment, and there were no deaths. At discharge, the GOS score was 5 in 36 cases, 4 in 1 case, and 3 in 1 case. Thirty-seven patients had a GOS score of 5, and 1 patient had a score of 3 at 6 months after the operation. CONCLUSION: The modified subdural Dolenc approach (Zheng approach) for clipping OSAs may be associated with less trauma and good postoperative outcomes.


Assuntos
Aneurisma Intracraniano , Feminino , Humanos , Masculino , Craniotomia/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Artéria Oftálmica , Estudos Retrospectivos
16.
Zhonghua Yi Xue Za Zhi ; 91(36): 2573-7, 2011 Sep 27.
Artigo em Zh | MEDLINE | ID: mdl-22321890

RESUMO

OBJECTIVE: To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. METHODS: The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). RESULTS: Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P < 0.05). The brain water content was significantly elevated in TAA-administrated rats compared with the control (P < 0.05). The expressions of AQP4 protein and mRNA in brain tissues significantly increased in TAA-administrated rats (P < 0.05). In addition, the expressions of AQP4 protein and mRNA were positively correlated with brain water content (r = 0.536, P < 0.01; r = 0.566, P = 0.01). CONCLUSIONS: The high expression of AQP4 in rats with TAA-induced acute liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.


Assuntos
Edema Encefálico , Tioacetamida , Animais , Aquaporina 4/metabolismo , Encefalopatias , Edema Encefálico/metabolismo , Modelos Animais de Doenças , Encefalopatia Hepática , Ratos , Ratos Sprague-Dawley
17.
Biomater Sci ; 9(14): 4968-4983, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34085682

RESUMO

Reactive oxygen species (ROS) are not only used as a therapeutic reagent in chemodynamic therapy (CDT), to stimulate the release of antineoplastic drugs, they can also be used to achieve a combined effect of CDT and chemotherapy to enhance anticancer effects. Herein, we synthesized a pH-responsive prodrug (PEG2k-NH-N-DOX), ROS-responsive prodrug (PEG2k-S-S-CPT-ROS), organic CDT agents (TPP-PEG2k-LND, TPP-PEG2k-TOS), and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), and used them to encapsulate combrestatinA4 (CA4) to prepare traceable pH/ROS dual-responsive multifunctional nanoparticles (TLDCAG NPs) with endogenous ROS burst and spatiotemporally controlled multiple drug release ability. Firstly, TLDCAG NPs were accumulated in the tumor cell microenvironment via an enhanced permeability and retention (EPR) effect. Secondly, CA4 was released and specifically destroyed angiogenesis to facilitate the interaction between the tumor and the remaining TLDCG NPs. After accumulating in tumor cells, the TLDCG NPs could be destroyed under acidic conditions to quickly release doxorubicin (DOX), TPP-PEG2k-LND, and TPP-PEG2k-TOS. Thirdly, TPP-PEG2k-LND and TPP-PEG2k-TOS quickly targeted mitochondria, induced endogenous ROS bursts, reduced the mitochondrial membrane potential, and induced tumor cell apoptosis. Endogenous ROS can not only be used as a therapeutic reagent for CDT, but also can cut off the thioketal bond in PEG2k-S-S-CPT-ROS and release camptothecin (CPT). Finally, TLDCAG NPs were traced by magnetic resonance imaging (MRI). Furthermore, in vitro and vivo results indicate that the TLDCAG NPs have vigorous antitumor activity and negligible systemic toxicity. Therefore, the TLDCAG NPs provide an efficient strategy for enhancing antitumor efficacy.


Assuntos
Nanopartículas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio
18.
Colloids Surf B Biointerfaces ; 205: 111866, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34044333

RESUMO

Constructing highly efficient and multifunctional nanoparticles to overcome the multiple challenges of targeted drug delivery is a new strategy urgently needed in tumor therapy. Here, we synthesized pH-responsive prodrug (PEG2K-NH-N-DOX), GSH-responsive prodrug (PEG2K-S-S-CPT), folate-receptor targeting polymers (FA-PEG2K-L8, FA-PEG2K-TOS) and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), used to encapsulate combrestatinA4 (CA4) to prepare multifunctional nanoparticles (FTDCAG NPs). Unlike other nanoparticles, FTDCAG NPs contains three drugs with the ability to control the release in time and space, which can maximize the effectiveness of precise cancer chemotherapy. We first confirmed that specific binding between FTDCAG NPs and overexpressed folate-receptor cells by flow cytometry and confocal laser scanning microscopy. We then investigated the spatiotemporally controlled release ability of FTDCAG NPs loaded with doxorubicin (DOX), CA4 and camptothecin (CPT). Relative to pH = 7.4, the release efficiency of CA4 in the pH = 6.5 increased by 63.4 %. The first released CA4 is able to destroy the angiogenesis and help tumor cells to be exposed to the remaining FTDCG NPs. After being internalized into the tumor cells, FTDCG NPs is disassembled and the CPT and DOX were released due to the increase of intracellular GSH concentration and the decrease of pH value. Besides, the relaxation time of FTDCAG NPs is 3.86 times that of clinical Gd-DTPA, and the in vitro and vivo T1-weighted imaging is brighter, which can be used to trace the nanoparticles by MRI. Therefore, FTDCAG NPs provide an efficient strategy for the design of multifunctional drug delivery systems for enhancing antitumor efficacy.


Assuntos
Nanopartículas , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Polímeros
19.
J Colloid Interface Sci ; 603: 783-798, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34246838

RESUMO

The targeting dual-responsive drug delivery system was employed for cancer treatment as a positive strategy. Herein, Lactobionic acid (LA)-modified and non-modified UV/reduction dual-responsive molecules (10,10-NB-S-S-P-LA and 10,10-NB-S-S-P-OMe) were synthesized. Functional magnetic resonance imaging (MRI) contrast agent (12,12-NB-DTPA-Gd) was mixed with 10,10-NB-S-S-P-LA or 10,10-NB-S-S-P-OMe in the optimal ratio (3:1) to develop targeted empty liposomes (GNSPL) or non-targeted empty liposomes (GNSPM) with superior UV/reduction dual-responsiveness, biocompatibility and magnetic resonance imaging (MRI) performance. The drug-loaded liposomes (GNSPLD and GNSPMD) can keep stable in two weeks, and the drug cumulative release rate reached to the maximum under dual stimulation of ultraviolet (UV) and reducing agent (TCEP). The treatment with GNSPLD + UV significantly inhibited the growth and migration of cancer cells in vitro. The GNSPLD liposomes were more effectively accumulated in tumor site than GNSPMD liposomes, due to the targeting property of GNSPLD liposomes. The treatment with GNSPLD + UV showed a better therapeutic efficacy than Doxorubicin (DOX) in vivo, and almost no side effects during the treatment period. Thus, the MRI-guided targeting dual-responsive drug delivery system provided a reliable therapeutic strategy for treating liver cancer.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Doxorrubicina/farmacologia , Humanos , Lipossomos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Imageamento por Ressonância Magnética
20.
ACS Appl Mater Interfaces ; 13(43): 50716-50732, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668377

RESUMO

The emergence of nano-targeted controlled release liposomal drug carriers has provided a breakthrough in cancer therapy. However, their clinical efficacy is unsatisfactory, which is related to individualized differences in targeted drugs and poor in vivo release efficiency. In this paper, we prepared a class of personalized targeted and precisely controlled-release therapeutic drug carriers (GF liposomes) by co-assembling targeting and traceable o-nitrobenzyl ester lipids to propose a magnetic resonance imaging (MRI)-guided personalized in vivo targeted drug screening strategy and a multi-stimulus superimposed controlled-release strategy. Furthermore, by following the drug release process of drug-loaded liposomes (GF-D), it was found that these liposomes could rely on energy superposition to achieve more sensitive and efficient controlled drug release. In addition, the indispensable adjustment of liposome formulation for personalized MRI-based targeted therapy was verified by differential cellular uptake and in vivo magnetic resonance imaging. In the end, the 10.22-fold tumor suppression effect in the stimulus superposition group (GF-D-UV) indicates that the multi-stimulus cumulative response strategy and MRI-guided in vivo screening strategy can more effectively treat cancer. This contribution provides a concise and clever design idea for the future development of personalized precise and efficient clinical cancer therapies.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Humanos , Lipossomos/química , Imageamento por Ressonância Magnética , Camundongos , Microscopia Confocal , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA