Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39038327

RESUMO

Objective: To systematically comparison of the relative effects of different types and times of physical activity on cognitive function among children with obesity or overweight. Methods: From the establishment of the database to September 2023, the relative effects of different types and times of physical activity on cognitive function among children with obesity or overweight published in Embase, PubMed, Cochrane Library, Web of Science, China Wanfang, HowNet, Chinese Biomedical Literature, and VIP were retrieved. A study of marker correlations. Literature were screened according to the inclusion and exclusion criteria, and relevant data were extracted for meta-analysis using Review Manager 5.3 software. Results: A total of 352 articles were obtained from the preliminary search, and 16 articles were finally included in the study. Meta-analysis revealed that physical activity improved executive function (SMD =-0.12; 95% CI = -0.46-0.22; I2=80.5%, P < .001), inhibition control (SMD =0.54; 95% CI =0.12-0.97, P < .0001, I2=89.9%), attention (SMD =0.04; 95% CI =-0.17, -0.26, P = .006, I2=59.4%), and cognitive function (SMD =-0.08; 95% CI =-0.79, 0.63, P < .0001, I2=96.4%). Conclusion: Physical activity can improve several domains of executive function, inhibition control, attention, and cognitive function. Moreover, the effects are affected by physical activity characteristics among overweight and obese children.

2.
Angew Chem Int Ed Engl ; 63(11): e202319635, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38242849

RESUMO

Side chain engineering plays a vital role in exploring high-performance small molecule acceptors (SMAs) for organic solar cells (OSCs). In this work, we designed and synthesized a series of A-DA'D-A type SMAs by introducing different N-substituted alkyl and ester alkyl side chains on benzotriazole (BZ) central unit and aimed to investigate the effect of different ester substitution positions on photovoltaic performances. All the new SMAs with ester groups exhibit lower the lowest unoccupied molecular orbital (LUMO) energy levels and more blue-shifted absorption, but relatively higher absorption coefficients than alkyl chain counterpart. After blending with the donor PM6, the ester side chain-based devices demonstrate enhanced charge mobility, reduced amorphous intermixing domain size and long-lived charge transfer state compared to the alkyl chain counterpart, which are beneficial to achieve higher short-circuit current density (Jsc ) and fill factor (FF), simultaneously. Thereinto, the PM6 : BZ-E31 based device achieves a higher power conversion efficiency (PCE) of 18.33 %, which is the highest PCE among the OSCs based on the SMAs with BZ-core. Our work demonstrated the strategy of ester substituted side chain is a feasible and effective approach to develop more efficient SMAs for OSCs.

3.
Phys Chem Chem Phys ; 22(3): 1787, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31859316

RESUMO

Correction for 'A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency' by Yunqiang Zhang et al., Phys. Chem. Chem. Phys., 2019, DOI: .

4.
Phys Chem Chem Phys ; 21(48): 26557-26563, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31782431

RESUMO

A new non-fullerene acceptor, namely Y10, based on dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (TPBT) as the central core and 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile (TC) as the electron-deficient end group, has been designed and synthesized. Y10 reveals a narrow optical energy gap (Eoptg) of 1.35 eV with a broad absorption band from 600 to 900 nm. A wide bandgap polymer, J11, as the donor material (Eoptg = 1.96 eV) is used to blend with Y10 for the construction of organic solar cell devices, which achieve an impressive power conversion efficiency (PCE) of 13.46% with an open circuit voltage (Voc) of 0.89 V, a short circuit current (Jsc) of 21.21 mA cm-2, and a fill factor (FF) of 71.55%, with thermal annealing treatment at 100 °C for 5 min and 0.8 wt% 1-chloronaphthalene (CN) as an additive. These results indicate that the incorporation of the TPBT unit as the central core and the TC unit as the electron-deficient end group provides an efficient strategy for the construction of high performance solar cells.

5.
J Agric Food Chem ; 72(7): 3572-3583, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334304

RESUMO

In this study, we aimed to explore the protective effects of Bifidobacterium in colitis mice and the potential mechanisms. Results showed that Bifidobacterium breve (B. breve) effectively colonized the intestinal tract and alleviated colitis symptoms by reducing the disease activity index. Moreover, B. breve mitigated intestinal epithelial cell damage, inhibited the pro-inflammatory factors, and upregulated tight junction (TJ)-proteins. Gut microbiota and metabolome analysis found that B. breve boosted bile acid-regulating genera (such as Bifidobacterium and Clostridium sensu stricto 1), which promoted bile acid deconjugation in the intestine. Notably, cholic acid (CA) was closely associated with the expression levels of inflammatory factors and TJ-proteins (p < 0.05). Our in vitro cell experiments further confirmed that CA (20.24 ± 4.53 pg/mL) contributed to the inhibition of lipopolysaccharide-induced tumor necrosis factor-α expression (49.32 ± 5.27 pg/mL) and enhanced the expression of TJ-proteins (Occludin and Claudin-1) and MUC2. This study suggested that B. breve could be a probiotic candidate for use in infant foods.


Assuntos
Bifidobacterium breve , Colite , Microbioma Gastrointestinal , Humanos , Lactente , Animais , Camundongos , Bifidobacterium breve/genética , Ácido Cólico/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Colite/microbiologia , Mucosa Intestinal , Bifidobacterium , Inflamação , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos
6.
Bioact Mater ; 35: 31-44, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38304916

RESUMO

Skin microbiota plays an important role in wound healing, but skin injuries are highly susceptible to wound infections, leading to disruption of the skin microbiota. However, conventional antibacterial hydrogels eliminate both probiotics and pathogenic bacteria, disrupting the balance of the skin microbiota. Therefore, it is important to develop a wound dressing that can fend off foreign pathogenic bacteria while preserving skin microbiota stability. Inspired by live bacteria therapy, we designed a probiotic hydrogel (HAEPS@L.sei gel) with high viability for promoting wound healing. Lactobacillus paracasei TYM202 encapsulated in the hydrogel has the activity of promoting wound healing, and the hydrogel matrix EPS-M76 has the prebiotic activity that promotes the proliferation and metabolism of Lactobacillus paracasei TYM202. During the wound healing process, HAEPS@L.sei gel releases lactic acid and acetic acid to resist the growth of pathogenic bacteria while maintaining Firmicutes and Proteobacteria balance at the phylum level, thus preserving skin microbiota stability. Our results showed that live probiotic hydrogels reduce the incidence of inflammation during wound healing while promoting angiogenesis and increasing collagen deposition. This study provides new ideas for developing wound dressings predicated on live bacterial hydrogels.

7.
J Agric Food Chem ; 71(38): 14027-14037, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702045

RESUMO

Our previous study found that fucogalactan sulfate (FS) from Laminaria japonica exhibited significant hypolipidemic effects. To further elucidate the mechanism, we first constructed a dyslipidemia mouse model with humanized gut microbiota and proved the main differential metabolic pathway involved bile acid metabolism. Then, we evaluated the beneficial effects of FS on dyslipidemia in this model mice, which revealed that oral FS administration reduced serum cholesterol levels and mitigated liver fat accumulation. Gut microbiota and microbiome analysis showed FS increased the abundance of Ruminococcaceae_NK4A214_group, GCA-900066755, and Eubacterium, which were positively associated with the fecal DCA, ß-MCA, and HDCA. Further investigation demonstrated that FS inhibited the hepatic farnesoid X receptor (FXR), while activating the intestinal FXR-FGF19 pathway, leading to suppression of CYP7A1 and CYP8B1, as well as potentially reduced bile acid synthesis and lipid absorption. Overall, FS regulated lipid metabolism in diet-induced humanized dyslipidemia mice via the bile acid-mediated intestinal FXR-FGF19-CYP7A1/CYP8B1 pathway.


Assuntos
Dislipidemias , Laminaria , Animais , Camundongos , Ácidos e Sais Biliares , Dieta , Dislipidemias/etiologia , Dislipidemias/genética , Metabolismo dos Lipídeos , Esteroide 12-alfa-Hidroxilase , Sulfatos
8.
Food Chem Toxicol ; 174: 113652, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764475

RESUMO

Alcohol-induced liver injury has become a leading risk for human health, however, effective strategies for the prevention or treatment are still lacking. Hence, the present study explored the potential of Musculus senhousei as a source of hepatoprotective peptides against alcoholic liver injury using in vitro, in vivo and in silico methods. Results indicated that Musculus senhousei peptides (MSP, extracted by simulated gastrointestinal digestion of cooked mussel) exhibited notable antioxidant (ABTS and DPPH assays) and alcohol dehydrogenase (ADH) stabilizing activity in vitro. The ingestion of MSP markedly alleviated alcohol-induced liver injury in mice, as indicated by the decrease of serum transaminases (AST and ALT). In line with in vitro assays, significantly increased hepatic ADH activity and activated antioxidative defense system (GSH, SOD, GSH-Px and CAT) were observed, whereas the oxidative stress (MDA) was decreased. Peptidomic analysis revealed over 6000 peptides with favorable amino acid compositions, and a total of 20 potentially novel peptides with bioactivity and bioavailability were excavated among 746 of the most influential peptides using an in silico strategy. Peptides (i.e. WLPMKL, WLWLPA, RLC and RCL) were further synthesized and validated in vitro to be bioactive. These findings suggest that Musculus senhousei can be an ideal source of bioactive peptides for the prevention of alcoholic liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Etanol/metabolismo , Antioxidantes/farmacologia , Peptídeos/farmacologia , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
9.
Microbiome ; 11(1): 262, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001551

RESUMO

BACKGROUND: Diet-induced dyslipidemia is linked to the gut microbiota, but the causality of microbiota-host interaction affecting lipid metabolism remains controversial. Here, the humanized dyslipidemia mice model was successfully built by using fecal microbiota transplantation from dyslipidemic donors (FMT-dd) to study the causal role of gut microbiota in diet-induced dyslipidemia. RESULTS: We demonstrated that FMT-dd reshaped the gut microbiota of mice by increasing Faecalibaculum and Ruminococcaceae UCG-010, which then elevated serum cholicacid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA), reduced bile acid synthesis and increased cholesterol accumulation via the hepatic farnesoid X receptor-small heterodimer partner (FXR-SHP) axis. Nevertheless, high-fat diet led to decreased Muribaculum in the humanized dyslipidemia mice induced by FMT-dd, which resulted in reduced intestinal hyodeoxycholic acid (HDCA), raised bile acid synthesis and increased lipid absorption via the intestinal farnesoid X receptor-fibroblast growth factor 19 (FXR-FGF19) axis. CONCLUSIONS: Our studies implicated that intestinal FXR is responsible for the regulation of lipid metabolism in diet-induced dyslipidemia mediated by gut microbiota-bile acid crosstalk. Video Abstract.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL
10.
Int J Biol Macromol ; 253(Pt 7): 127335, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820919

RESUMO

This study aimed to explore the efficacy of polysaccharides from bergamot (BP) in alleviating DSS-induced colitis. Results showed that BP was primarily composed of two components, BP-1 and BP-2, with similar monosaccharide compositions to BP (mainly glucose and xylose) and molecular weights (Mw) of 4.50 × 105 and 2.35 × 105 Da. This study found BP relieved disease symptoms such as weight loss and colon shortening in mice with colitis. Gut microbiota and metabolomics analysis revealed that the BP could also promote the proliferation of beneficial bacteria such as Bifidobacteria, Butyrivibrio, and Blautia, resulting in increased levels of SCFAs and L-phenylalanine, which were associated with phenylalanine, tyrosine, and tryptophan metabolism pathways. Further analysis validated the inflammatory activity of L-phenylalanine. Hence, BP may relieve colitis symptoms by regulating the gut microbiota and metabolism, which reduced inflammation and enhanced the expression of tight junctional proteins (TJ proteins) and mucin in the intestine.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação , Colo , Fenilalanina , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
11.
Adv Sci (Weinh) ; 9(34): e2203513, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36316244

RESUMO

PM6 is a widely used D-A copolymer donor in the polymer solar cells (PSCs). Incorporating second electron-withdrawing (A2 ) units into PM6 backbone by ternary D-A1 -D-A2 random copolymerization strategy is an effective approach to further improve its photovoltaic performance. Here, the authors synthesize the PM6-based terpolymers by introducing thiazolothiazole as the A2 units connecting with thiophene π-bridges attaching alkyl substituent towards the A2 unit (PMT-CT) or towards D-unit (PMT-FT), and study the effect of the alkyl substituent position on the photovoltaic performance of them. Two terpolymers PMT-FT-10 and PMT-CT-10 are obtained by incorporating 10% A2 units in the terpolymers. The film of PMT-CT-10 shows slightly up-shifted highest occupied molecular orbital (HOMO) energy levels while better co-planar structure than that of PMT-FT-10. Meanwhile, the PMT-CT-10:Y6 blend film exhibits better molecular packing properties, more proper phase separation and more balanced hole and electron mobilities, which are beneficial to more efficient exciton dissociation, efficient charge transport and weaker bimolecular recombination. Consequently, the PMT-CT-10 based PSCs obtain the highest power conversion efficiency of 18.21%. The results indicate that side chain position on the thiophene π-bridges influence the device performance of the terpolymer donors, and PMT-CT-10 is a high efficiency polymer donor for the PSCs.

12.
Adv Mater ; 34(20): e2108749, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35290692

RESUMO

All-polymer solar cells (all-PSCs) have drawn growing attention and achieved tremendous progress recently, but their power conversion efficiency (PCE) still lags behind small-molecule-acceptor (SMA)-based PSCs due to the relative difficulty on morphology control of polymer photoactive blends. Here, low-cost PTQ10 is introduced as a second polymer donor (a third component) into the PM6:PY-IT blend to finely tune the energy-level matching and microscopic morphology of the polymer blend photoactive layer. The addition of PTQ10 decreases the π-π stacking distance, and increases the π-π stacking coherence length and the ordered face-on molecular packing orientation, which improves the charge separation and transport in the photoactive layer. Moreover, the deeper highest occupied molecular orbital energy level of the PTQ10 polymer donor than PM6 leads to higher open-circuit voltage of the ternary all-PSCs. As a result, a PCE of 16.52% is achieved for ternary all-PSCs, which is one of the highest PCEs for all-PSCs. In addition, the ternary devices exhibit a high tolerance of the photoactive layer thickness with high PCEs of 15.27% and 13.91% at photoactive layer thickness of ≈205 and ≈306 nm, respectively, which are the highest PCEs so far for all-PSCs with a thick photoactive layer.

13.
ACS Appl Mater Interfaces ; 13(30): 36033-36043, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288666

RESUMO

Optimization of morphology and precise control of miscibility between donors and acceptors play an important role in improving the power conversion efficiencies (PCEs) of all-small-molecule organic solar cells (SM-OSCs). Besides device optimization, methods such as additives and thermal annealing are applied for finely tuning bulk-heterojunction morphology; strategies of molecular design are also the key to achieve efficient phase separation. Here, a series of A-D-A-type small-molecule donors (SM4, SM8, and SM12) based on benzodithiophene units were synthesized with different lengths of alkylthio side chains to regulate crystallinity, and their miscibility with the acceptor (BO-4Cl) was investigated. Consequently, SM4 with a short alkylthio substituent had a high crystallization propensity, leading to the oversized molecular domains and the poor morphology of the active layer. Meanwhile, SM12 with a longer alkylthio substituent showed weak crystallinity, causing a relatively looser π-π stacking and thus adversely affecting charge-carrier transport. The SM-OSC based on the small-molecule donor SM8 with a mid-length alkylthio substituent achieved a better PCE over 13%, which was attributed to a more harmonious blend miscibility without sacrificing carrier-charge transport. Eventually, the modulation of phase separation and miscibility via controlling the lateral side chains has proven its potential in optimizing the blend morphology to aid the development of highly efficient SM-OSCs.

14.
Adv Mater ; 31(17): e1807577, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30883937

RESUMO

Narrow bandgap n-type organic semiconductors (n-OS) have attracted great attention in recent years as acceptors in organic solar cells (OSCs), due to their easily tuned absorption and electronic energy levels in comparison with fullerene acceptors. Herein, a new n-OS acceptor, Y5, with an electron-deficient-core-based fused structure is designed and synthesized, which exhibits a strong absorption in the 600-900 nm region with an extinction coefficient of 1.24 × 105 cm-1 , and an electron mobility of 2.11 × 10-4 cm2 V-1 s-1 . By blending Y5 with three types of common medium-bandgap polymers (J61, PBDB-T, and TTFQx-T1) as donors, all devices exhibit high short-circuit current densities over 20 mA cm-2 . As a result, the power conversion efficiency of the Y5-based OSCs with J61, TTFQx-T1, and PBDB-T reaches 11.0%, 13.1%, and 14.1%, respectively. This indicates that Y5 is a universal and highly efficient n-OS acceptor for applications in organic solar cells.

15.
ACS Appl Mater Interfaces ; 10(48): 41318-41325, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398050

RESUMO

Two conjugated polymers, with different side chains of alkoxy-substituted difluorobenzene and alkyl-substituted difluorobenzene based on quinoxaline (Qx) as the electron acceptor unit and benzodithiophene as the electron donor unit, named HFQx-T and HFAQx-T, were used as electron donor polymers to fabricate all-polymer solar cells (all-PSCs) with a naphthalenediimide-bithiophene n-type semiconducting polymer (N2200). Usually, halogenated solvents are harmful to natural environment and human beings, and solvent additives were disadvantageous in the process of roll-to-roll technology. The Qx-based polymers are successfully used to fabricate high-performance all-PSCs, which processed with the nonhalogenated solvent tetrahydrofuran (THF) at room temperature. With THF as the processing solvent, the active layer showed a higher absorption coefficient, better phase separation, exciton dissociation, and charge carrier mobilities than that processed with CHCl3. Moreover, the photovoltaic properties have been dramatically improved with THF. The optimized device of HFAQx-T:N2200 processed with THF delivered an efficient power conversion efficiency (PCE) of 7.45%, which is the highest PCE for all-PSCs from Qx-based polymers processed by a nonhalogenated solvent.

16.
IEEE Trans Vis Comput Graph ; 22(11): 2437-50, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26701789

RESUMO

Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA