Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Signal ; 113: 110974, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972803

RESUMO

BACKGROUND: Cardiac hypertrophy is studied in relation to energy metabolism, autophagy, and ferroptosis, which are associated with cardiovascular adverse events and chronic heart failure. Protein kinase D (PKD) has been shown to play a degenerative role in cardiac hypertrophy. However, the role of ferroptosis in PKD-involved cardiac hypertrophy remains unclear. METHODS: A cardiac hypertrophy model was induced by a subcutaneous injection of angiotensin II (Ang II) for 4 weeks. Adeno-associated virus serotype 9 (AAV9)-PKD or AAV9-Negative control were injected through the caudal vein 2 weeks prior to the injection of Ang II. The degree of cardiac hypertrophy was assessed using echocardiography and by observing cardiomyocyte morphology. Levels of ferroptosis and protein expression in the Jun N-terminal kinase (JNK)/P53 signaling pathway were measured both in vivo and in vitro. RESULTS: The results indicated that PKD knockdown reduces Ang II-induced cardiac hypertrophy, enhances cardiac function and inhibits ferroptosis. The involvement of the JNK/P53 pathway in this process was further confirmed by in vivo and in vitro experiments. CONCLUSION: In conclusion, our findings suggest that PKD knockdown mitigates Ang II-induced cardiac hypertrophy and ferroptosis via the JNK/P53 signaling pathway.


Assuntos
Angiotensina II , Ferroptose , Humanos , Angiotensina II/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais
2.
Front Bioeng Biotechnol ; 12: 1373419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737538

RESUMO

Atopic dermatitis (AD) is a common inflammatory skin disease that significantly affects patients' quality of life. This study aimed to evaluate the therapeutic potential of cell-free fat extract (FE) in AD. In this study, the therapeutic effect of DNCB-induced AD mouse models was investigated. Dermatitis scores and transepidermal water loss (TEWL) were recorded to evaluate the severity of dermatitis. Histological analysis and cytokines measurement were conducted to assess the therapeutic effect. Additionally, the ability of FE to protect cells from ROS-induced damage and its ROS scavenging capacity both in vitro and in vivo were investigated. Furthermore, we performed Th1/2 cell differentiation with and without FE to elucidate the underlying therapeutic mechanism. FE reduced apoptosis and cell death of HaCat cells exposed to oxidative stress. Moreover, FE exhibited concentration-dependent antioxidant activity and scavenged ROS both in vitro and vivo. Treatment with FE alleviated AD symptoms in mice, as evidenced by improved TEWL, restored epidermis thickness, reduced mast cell infiltration, decreased DNA oxidative damage and lower inflammatory cytokines like IFN-γ, IL-4, and IL-13. FE also inhibited the differentiation of Th2 cells in vitro. Our findings indicate that FE regulates oxidative stress and mitigates Th2-mediated inflammation in atopic dermatitis by inhibiting Th2 cell differentiation, suggesting that FE has the potential as a future treatment option for AD.

3.
Front Pharmacol ; 12: 691773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135761

RESUMO

Parkinson's disease is a neurodegenerative disorder in which activated microglia may appear prior to motor symptoms, but the specific therapeutic mechanisms remain unclear. This study investigated the potential effects of Edaravone (EDA) on M1/M2 polarization of microglia in rats with dopaminergic neurons damage induced by lipopolysaccharide (LPS) and its mechanism. Rats were randomly grouped as the following (n = 10): Control, EDA alone (10 mg/kg), LPS-model (LPS 5 µg), LPS + EDA (5 mg/kg) and LPS + EDA (10 mg/kg). After intragastric administration of EDA once a day for seven consecutive days, LPS was injected into SN pars unilaterally. Rotarod test, pole test, and traction test were used to analyze the intervention effect of EDA on neurobehavioral function in rats. Protein expression levels of TH, TNF-α, Arg-1, Iba-1, NLRP3 and caspase-1 were measured by immunofluorescence staining and western blot. In vitro, BV-2 cells were treated with LPS (100 ng/ml) before adding different doses of EDA. Levels of inflammatory cytokines in culture medium were detected by ELISA. Western blot and immunofluorescence were used to evaluate microglial activation and polarization. First, rotarod test, pole test, and traction test all showed that EDA mitigated motor dysfunction of PD rats. Second, pathological analysis suggested that EDA inhibited LPS-induced microglial activation and remitted declines of dopaminergic neurons. In addition, EDA shifted M1 pro-inflammatory phenotype of microglia to M2 anti-inflammatory state, while decreased expression of M1 markers (TNF-α and IL-1ß) and facilitated expression of M2 markers (Arg-1 and IL-10). EDA suppressed inflammatory responses through inhibiting the expression of pro-inflammatory factors (IL-1ß, IL-18 and NO), but the neuroprotective effects were invalid while siRNA NLRP3 existed. In conclusion, these results indicated that EDA could improve neurobehavioral functions and play anti-neuroinflammatory roles in PD rats, possibly by inhibiting NLPR3 inflammasome activation and regulating microglia M1/M2 polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA