Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(32)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38701763

RESUMO

Advanced photocatalysts are highly desired to activate the photocatalytic CO2reduction reaction (CO2RR) with low concentration. Herein, the NiSn(OH)6with rich surface lattice hydroxyls was synthesized to boost the activity directly under the natural air. Results showed that terminal Ni-OH could serve as donors to feed protons and generate oxygen vacancies (VO), thus beneficial to convert the activated CO2(HCO3-) mainly into CO (5.60µmol g-1) in the atmosphere. It was flexible and widely applicable for a stable CO2RR from high pure to air level free of additionally adding H2O reactant, and higher than the traditional gas-liquid-solid (1.58µmol g-1) and gas-solid (4.07µmol g-1) reaction system both using high pure CO2and plenty of H2O. The strong hydrophilia by the rich surface hydroxyls allowed robust H2O molecule adsorption and dissociation at VOsites to achieve the Ni-OH regeneration, leading to a stable CO yield (11.61µmol g-1) with the enriched renewable VOregardless of the poor CO2and H2O in air. This work opens up new possibilities for the practical application of natural photosynthesis.

2.
Nano Lett ; 23(14): 6673-6680, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37428875

RESUMO

Thermal resistance at a soft/hard material interface plays an undisputed role in the development of electronic packaging, sensors, and medicine. Adhesion energy and phonon spectra match are two crucial parameters in determining the interfacial thermal resistance (ITR), but it is difficult to simultaneously achieve these two parameters in one system to reduce the ITR at the soft/hard material interface. Here, we report a design of an elastomer composite consisting of a polyurethane-thioctic acid copolymer and microscale spherical aluminum, which exhibits both high phonon spectra match and high adhesion energy (>1000 J/m2) with hard materials, thus leading to a low ITR of 0.03 mm2·K/W. We further develop a quantitative physically based model connecting the adhesion energy and ITR, revealing the key role the adhesion energy plays. This work serves to engineer the ITR at the soft/hard material interface from the aspect of adhesion energy, which will prompt a paradigm shift in the development of interface science.

3.
J Environ Manage ; 355: 120503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457894

RESUMO

The global concern regarding the adverse effects of heavy metal pollution in soil has grown significantly. Accurate prediction of heavy metal content in soil is crucial for environmental protection. This study proposes an inversion analysis method for heavy metals (As, Cd, Cr, Cu, Ni, Pb) in soil based on hyperspectral and machine learning algorithms for 21 soil reference materials from multiple provinces in China. On this basis, an integrated learning model called Stacked RF (the base model is XGBoost, LightGBM, CatBoost, and the meta-model is RF) was established to perform soil heavy metal inversion. Specifically, three popular algorithms were initially employed to preprocess the spectral data, then Random Forest (RF) was used to select the best feature bands to reduce the impact of noise, finally Stacking and four basic machine learning algorithms were used to establish comparisons and analysis of inversion model. Compared with traditional machine learning methods, the stacking model showcases enhanced stability and superior accuracy. Research results indicate that machine learning algorithms, especially ensemble learning models, have better inversion effects on heavy metals in soil. Overall, the MF-RF-Stacking model performed best in the inversion of the six heavy metals. The research results will provide a new perspective on the ensemble learning model method for soil heavy metal content inversion using data of hyperspectral characteristic bands collected from soil reference materials.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , China , Aprendizado de Máquina
4.
BMC Genomics ; 24(1): 300, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268894

RESUMO

BACKGROUND: There is a mutual hemodynamic and pathophysiological basis between the heart and brain. Glutamate (GLU) signaling plays an important role in the process of myocardial ischemia (MI) and ischemic stroke (IS). To further explore the common protective mechanism after cardiac and cerebral ischemic injuries, the relationship between GLU receptor-related genes and MI and IS were analyzed. RESULTS: A total of 25 crosstalk genes were identified, which were mainly enriched in the Toll-like receptor signaling pathway, Th17 cell differentiation, and other signaling pathways. Protein-protein interaction analysis suggested that the top six genes with the most interactions with shared genes were IL6, TLR4, IL1B, SRC, TLR2, and CCL2. Immune infiltration analysis suggested that immune cells such as myeloid-derived suppressor cells and monocytes were highly expressed in the MI and IS data. Memory B cells and Th17 cells were expressed at low levels in the MI and IS data; molecular interaction network construction suggested that genes such as JUN, FOS, and PPARA were shared genes and transcription factors; FCGR2A was a shared gene of MI and IS as well as an immune gene. Least absolute shrinkage and selection operator logistic regression analysis identified nine hub genes: IL1B, FOS, JUN, FCGR2A, IL6, AKT1, DRD4, GLUD2, and SRC. Receiver operating characteristic analysis revealed that the area under the curve of these hub genes was > 65% in MI and IS for all seven genes except IL6 and DRD4. Furthermore, clinical blood samples and cellular models showed that the expression of relevant hub genes was consistent with the bioinformatics analysis. CONCLUSIONS: In this study, we found that the GLU receptor-related genes IL1B, FOS, JUN, FCGR2A, and SRC were expressed in MI and IS with the same trend, which can be used to predict the occurrence of cardiac and cerebral ischemic diseases and provide reliable biomarkers to further explore the co-protective mechanism after cardiac and cerebral ischemic injury.


Assuntos
Isquemia Encefálica , Isquemia Miocárdica , Humanos , Interleucina-6 , Miocárdio , Isquemia Miocárdica/genética , Biologia Computacional , Isquemia Encefálica/genética
5.
Small ; 19(7): e2205692, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494182

RESUMO

Chemodynamic therapy (CDT) utilizes Fenton or Fenton-like reactions to convert hydrogen peroxide (H2 O2 ) into cytotoxic hydroxyl radicals (•OH) and draws extensive interest in tumor therapy. Nevertheless, high concentrations of glutathione (GSH) and insufficient endogenous H2 O2 often cause unsatisfactory therapeutic efficacy. Herein, a GSH-depleting and H2 O2 self-providing carrier-free nanomedicine that can efficiently load indocyanine green (ICG), ß-lapachone (LAP), and copper ion (Cu2+ ) (ICG-Cu2+ -LAP, LICN) to mediate synergetic photothermal and chemotherapy in enhanced chemodynamic therapy is designed. The results show that  LICNs successfully enter tumors owing to the enhanced permeability and retention effect. Through the reductive intracellular environment, Cu2+ in LICN can react with intracellular GSH, alleviate the antioxidant capacity of tumor tissues, and trigger the release of drugs. When LICN is subjected to near-infrared (NIR) irradiation, enhanced photothermal effect and upregulated expression of NAD(P)H quinone oxidoreductase-1 (NQO1) are observed. Meanwhile, the released LAP not only supports chemotherapy but also catalyzes NQO1 and produces sufficient endogenous H2 O2 , thereby increasing the efficiency of Cu+ -based Fenton-like reaction. Notably, GSH depletion and H2 O2 self-sufficiency generate sufficient •OH and kill tumor cells with high specificity. Overall, the study provides an innovative strategy to self-regulate GSH and H2 O2 levels for effective anticancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Cobre , Radical Hidroxila , Nanomedicina , Peróxido de Hidrogênio/farmacologia , Microambiente Tumoral , Glutationa/metabolismo
6.
BMC Cancer ; 23(1): 1048, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907864

RESUMO

BACKGROUND: Thyroid cancer (THCA) has become increasingly common in recent decades, and women are three to four times more likely to develop it than men. Evidence shows that estrogen has a significant impact on THCA proliferation and growth. Nevertheless, the effects of estrogen-related genes (ERGs) on THCA stages, immunological infiltration, and treatment susceptibility have not been well explored. METHODS: Clinicopathological and transcriptome data of patients with THCA from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were cleaned before consensus clustering. Differential expression analysis was performed on the genes expressed between THCA and paraneoplastic tissues in TCGA, and Wayne analysis was performed on the ERGs obtained from the Gene Set Enrichment Analysis MsigDB and differentially expressed genes (DEGs). Univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were used to identify the set of estrogen-related differentially expressed genes (ERDEGs) associated with progression-free intervals (PFI) and to establish a prediction model. Receiver operating characteristic curves were plotted to calculate the risk scores and PFI status to validate the predictive effect of the model. Enrichment analyses and immune infiltration analyses were performed to analyze DEGs between the high- and low-risk groups, and a nomogram plot was used in the risk model to predict the PFI of THCA. RESULTS: The expression of 120 ERDEGs differed significantly between the two groups (P < 0.05). Five (CD24, CAV1, TACC1, TIPARP, and HSD17B10) of the eight ERDEGs identified using univariate Cox and LASSO regression were validated via RT-qPCR and immunohistochemistry analysis of clinical tissue samples and were used for clinical staging and drug sensitivity analysis. Risk-DEGs were shown to be associated with immune modulation and tumor immune evasion, as well as defense systems, signal transduction, the tumor microenvironment, and immunoregulation. In 19 of the 28 immune cells, infiltration levels differed between the high- and low-risk groups. High-risk patients in the immunotherapy dataset had considerably shorter survival times than low-risk patients. CONCLUSION: We identified and confirmed eight ERDEGs using a systematic analysis and screened sensitive drugs for ERDEGs. These results provide molecular evidence for the involvement of ERGs in controlling the immunological microenvironment and treatment response in THCA.


Assuntos
Neoplasias da Glândula Tireoide , Masculino , Humanos , Feminino , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Genes cdc , Prognóstico , Estrogênios , Microambiente Tumoral/genética
7.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815260

RESUMO

Lignin, an amorphous biomacromolecule abundantly distributed in the plant kingdom, has gained considerable attention due to its intrinsic bioactivities and renewable nature. Owing to its polyphenolic structure, lignin has a variety of human health activities, including antioxidant, antimicrobial, antidiabetic, antitumor, and other activities. The extraction of lignin from various sources in a green and sustainable manner is critical in the food industry. Deep eutectic solvent (DES) has recently been recognized as a class of safe and environmentally friendly media capable of efficiently extracting lignin. This article comprehensively reviews the recent advances in lignin extraction using DES, discusses the influential factors on the antioxidant activity of lignin, interprets the relationship between antioxidant activity and lignin structure, and overviews the applications of lignin in the food industry. We aim to highlight the advantages of DES in lignin extraction and valorization from the nutrition and food views.

8.
Vet Res ; 54(1): 78, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710276

RESUMO

Bovine mastitis, the most prevalent and costly disease in dairy cows worldwide, decreases milk quality and quantity, and increases cow culling. However, involvement of microRNAs (miRNAs) in mastitis is not well characterized. The objective was to determine the role of microRNA-223 (miR-223) in regulation of the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and kelch like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) oxidative stress pathway in mastitis models induced by lipopolysaccharide (LPS) treatment of immortalized bovine mammary epithelial cells (bMECs) and murine mammary glands. In bMECs cultured in vitro, LPS-induced inflammation downregulated bta-miR-223; the latter interacted directly with the 3' untranslated region (3' UTR) of NLRP3 and Keap1. Overexpression of bta-miR-223 in bMECs decreased LPS and Adenosine 5'-triphosphate (ATP)-induced NLRP3 and its mediation of caspase 1 and IL-1ß, and inhibited LPS-induced Keap1 and Nrf2 mediated oxidative stress, whereas inhibition of bta-miR-223 had opposite effects. In an in vivo murine model of LPS-induced mastitis, increased miR-223 mitigated pathology in the murine mammary gland, whereas decreased miR-223 increased inflammatory changes and oxidative stress. In conclusion, bta-miR-223 mitigated inflammation and oxidative injury by downregulating the NLRP3 inflammasome and Keap1/Nrf2 signaling pathway. This study implicated bta-miR-223 in regulation of inflammatory responses, with potential as a novel target for treating bovine mastitis and other diseases.


Assuntos
Doenças dos Bovinos , Mastite Bovina , MicroRNAs , Animais , Bovinos , Feminino , Camundongos , Trifosfato de Adenosina , Células Epiteliais , Inflamassomos , Inflamação/veterinária , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Estresse Oxidativo
9.
Fish Shellfish Immunol ; 134: 108623, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36809843

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in many biological processes including the immune response against virus infection. However, their roles in grass carp reovirus (GCRV) pathogenicity are largely unknown. In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in GCRV-infected and mock-infected grass carp kidney (CIK) cells. Our results showed that 37 lncRNAs and 1039 mRNA transcripts exhibited differential expression in CIK cells after GCRV infection compared with the mock infection. Functional analysis through the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases (KEGG) indicated that target genes of the differentially expressed lncRNAs were mainly enriched in the biological processes - biological regulation, cellular process, metabolic process and regulation of the biological process, such as MAPK signaling pathway and Notch signaling. Furthermore, we observed that the lncRNA3076 (ON693852) was markedly upregulated after the GCRV infection. In addition, silencing lncRNA3076 decreased the GCRV replication, which indicates that it might play an important role in the replication of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , RNA Longo não Codificante , Infecções por Reoviridae , Reoviridae , Animais , Carpas/metabolismo , Reoviridae/fisiologia , Proteínas de Peixes/genética
10.
J Ultrasound Med ; 42(12): 2845-2858, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37732901

RESUMO

OBJECTIVES: The study aims to compare retrospectively three clinically applied methods for the diagnostic performance of cystic renal masses (CRMs) by contrast-enhanced ultrasound (CEUS) and contrast-enhanced computer tomography (CECT) with Bosniak classification system. METHODS: A total of 52 cases of Bosniak II-IV CRMs in 49 consecutive patients were diagnosed from January 2013 to July 2022 and their data were analyzed. All patients had been subjected to CEUS and CECT simultaneously. Pathological diagnoses and masses stability were used as standard references to determine whether lesions were malignant or benign. Then 49 CRMs only with pathologic results were classified into group 1 and 2. RESULTS: A total of 52 CRMs in 49 enrolled patients were classified into 8 category II, 16 category IIF, 15 category III, and 13 category IV by CEUS (EFSUMB 2020), 10 category II, 13 category IIF, 16 category III, and 13 category IV by CEUS (V2019), while 15 category II, 9 category IIF, 13 category III, and 15 category IV by CECT (V2019). Pathological results and masses stability longer than 5 years follow-up performed substantially for CEUS (EFSUMB 2020), CEUS (V2019), and CECT (V2019) (kappa values were 0.696, 0.735, and 0.696, respectively). Among 49 pathologic approving CRMs, wall/septation thickness ≥4 mm, wall/septation thickness, presence of enhancing nodule and the diameter were found to be statistically significant for malignancy. Twenty-two malignant masses were correctly diagnosed by CEUS (V2019), while 21 malignant masses were both correctly diagnosed by CEUS (EFSUMB 2020) and CECT (V2019), and 1 mass was misdiagnosed. CONCLUSIONS: Bosniak classification of EFSUMB 2020 version might be as accurate as version 2019 CEUS and version 2019 CECT in diagnosing CRMs, and CEUS is found to have an excellent safety profile in dealing with clinical works.


Assuntos
Doenças Renais Císticas , Neoplasias Renais , Humanos , Estudos Retrospectivos , Rim/patologia , Tomografia Computadorizada por Raios X/métodos , Neoplasias Renais/diagnóstico por imagem , Ultrassonografia/métodos , Computadores , Doenças Renais Císticas/diagnóstico por imagem , Meios de Contraste
11.
Chaos ; 33(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060781

RESUMO

Thermal rectification is a mechanism that controls the direction of heat conduction, allowing it to flow freely in one direction and hindering it in the opposite direction. In this study, we propose a heat conduction model on a complex network where the node masses are non-uniformly distributed according to mi∼kiα. Our findings show that the existence of a critical point, α=1, determines the working mode of thermal rectification. For α>1, the working mode of thermal rectification is positive, whereas for α<1, the working mode is negative. Additionally, we discovered that this critical transition is a general phenomenon and does not vary with changes in network size, average degree, or degree distribution. By conducting theoretical analyses based on phonon spectra, we also identified the physical mechanism of the critical transition. These results provide a new approach to implement and enrich thermal diodes, opening up new possibilities for more efficient thermal management.

12.
Colloids Surf A Physicochem Eng Asp ; 667: 131367, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37025928

RESUMO

Personal protective textiles have attracted extensive interest since Corona Virus Disease 2019 has broken out. Moreover, developing eco-friendly, multifunctional waterproof, and breathable surface is of great importance but still faces enormous challenges. Notably, good hydrophobicity and breathability are necessary for protective textiles, especially protective clothing and face masks for healthcare. Herein, the multifunctional composite coatings with good UV-resistant, anti-oxidative, hydrophobic, breathable, and photothermal performance has been rapidly created to meet protective requirements. First, the gallic acid and chitosan polymer was coated onto the cotton fabric surface. Subsequently, the modified silica sol was anchored on the coated cotton fabric surface. The successful fabrication of composite coatings was verified by RGB values obtained from the smartphone and K/S value. The present work is an advance for realizing textile hydrophobicity by utilizing fluorine-free materials, compared with the surface hydrophobicity fabricated with conventional fluorinated materials. The surface free energy has been reduced from 84.2 to27.6 mJ/m2 so that the modified cotton fabric could repel the ethylene glycol, hydrochloric acid, and sodium hydroxide solutions, respectively. Besides, the composite coatings possesses lower adhesion to deionized water. After 70 cycles of the sandpaper abrasion, the fluorine-free hydrophobic coatings still exhibits good hydrophobicity with WCA of 124.6 ± 0.9°, with overcoming the intrinsic drawback of the poor abrasion resistance of hydrophobic surfaces. Briefly, the present work may provide a universal strategy for rapidly creating advanced protective coatings to meet personal healthcare, and a novel method for detecting RGB values of composite coatings by smartphone.

13.
Plant Dis ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36802291

RESUMO

Cherry tomatoes (Lycopersicon esculentum var. cerasiforme) is the main tomato variety planted in Hainan Province, China and is prized for its nutritional value and sweet taste (Zheng et al. 2020). During October 2020 to February 2021, a leaf spot disease was observed on cherry tomatoes (cultivar Qianxi) in Chengmai, Hainan Province. The disease incidence was approximately 40% in each of three fields in Yongfa (19°76'-21°08'N, 110°21'-110°51'E). Leaves were initially chlorotic before developing black, irregular-shaped lesions on the leaf margins or tips. After several days, lesions expanded along the mid-vein to encompass the entire leaf. Then, the affected leaves turned gray-brown, leading to defoliation. Severely affected leaves became dry and necrotic. Leaf tissues of 10 diseased plants samples collected from the fields were surface sterilized in 70% ethanol for 30 s, 0.1% HgCl2 for 30 s, rinsed thrice with sterile distilled water for 30 s, placed on a modified potato dextrose agar (PDA) with 30 mg/liter of kanamycin sulfate, and incubated at 28°C in the dark for 3 to 5 days. Three fungal isolates were obtained from the diseased leaves by single-sporing. The mycelia on PDA were white and later became gray or dark gray after 3 to 4 days. Conidia were rostrate, straight to slightly curved, ellipsoidal to narrowly obclavate, dark brown, protuberant with a darker and thicker wall at the basal end. Conidia were 4 to 12 distoseptate and measured 63.92 ± 5.77 × 13.47 ± 1.22 µm (n= 50) Conidiophores were single, cylindrical, dark brown, geniculate, with swollen conidiogenous cells containing a acircular conidial scar. Morphological characteristics of the isolates were similar to those of Exserohilum rostratum (Cardona et al. 2008). A representative isolate (FQY-7) was used for pathogenicity and genomic studies. Genomic DNA was extracted from the mycelium of a representative isolate (FQY-7). The internal transcribed spacer (ITS) region, actin (act), translation elongation factor 1-alpha (tef1-α), glyceraldehydes 3-phos-phate dehydrogenase (gapdh) and ß-tubulin (tub2) genes were amplified with primers ITS1/ITS4 (White et al. 1990), Act1/Act4 (Voigt and Wöstemeyer 2000), EF1-728F/EF1-986R (Carbone and Kohn 1999), Gpd-1/Gpd-2 (Berbee et al. 1999) and T1 (O'Donnell and Cigelnik 1997) + Bt2b (Glass and Donaldson 1995). The consensus sequences (GenBank Accession No. MW036279 for ITS, MW133266 for act, MW133268 for tef1-α, MW133267 for gapdh, and MW133269 for tub2) were aligned using BLAST in GenBank obtaining 100%, 100%, 99%, 100%, and 99% identity to E. rostratum strain CBS706 (LT837842, LT837674, LT896663, LT882546, LT899350). Maximum likelihood analysis based on the combined five gene sequences was conducted under 1,000 bootstrap replicates. The Phylogenetic tree showed that FQY-7 and E. rostratum were located in one clade supported with 99% bootstrap values. Pathogenicity test was performed by depositing 10-µl droplets of a conidial suspension (1 × 106 per ml) into 5 noninoculated leaves (using a sterile needle) of 10 healthy 5-month-old cherry tomato (cv. Qianxi) plants. An equal number of artificially control leaves were received only sterile water to serve as a negative control. The test was conducted three times. Plants were kept at 28°C with 80% humidity and observed for symptoms every day. Two weeks after inoculation, all the inoculated plants showed symptoms of black spots similar to those observed in the field. No symptoms were observed on the controls. FQY-7 was successfully re-isolated from the inoculated leaves and confirmed by morphological characterization and molecular assays as described herein. To the best of our knowledge, this is the first report of leaf spot of cherry tomatoes caused by E. rostratum in China. Confirming the existence of this pathogen in this area will be useful to adopt effective field management measures to control this disease on cherry tomatoes. References: Berbee, M. L., et al. 1999. Mycologia 91:964. Cardona, R. et al. 2008. Bioagro 20:141. Carbone, I. and Kohn, L. M. 1999. Mycologia 91:553. Glass, N. L., and Donaldson, G. C. 1995. Appl. Environl. Microb. 61:1323. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. O'Donnell K., and Cigelnik, E. 1997. Mol. Phylogenet. Evol. 7:103. Voigt, K., and Wöstemeyer, J. 2000. Microbiol. Res. J. 155:179. Zheng J., et al. 2020. Guangdong Agr. Sci. 47:212. The author(s) declare no conflict of interest.

14.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834566

RESUMO

Hydroxyl-α-sanshool is the main alkylamide produced by Zanthoxylum armatum DC., and it is responsible for numbness after consuming Z. armatum-flavored dishes or food products. The present study deals with the isolation, enrichment, and purification of hydroxyl-α-sanshool. The results indicated that the powder of Z. armatum was extracted with 70% ethanol and then filtrated; the supernatant was concentrated to get pasty residue. Petroleum ether (60-90 °C) and ethyl acetate at a 3:2 ratio, with an Rf value of 0.23, were chosen as the eluent. Petroleum ether extract (PEE) and ethyl acetate-petroleum ether extract (E-PEE) were used as the suitable enriched method. Afterward, the PEE and E-PEE were loaded onto silica gel for silica gel column chromatography. Preliminary identification was carried out by TLC and UV. The fractions containing mainly hydroxyl-α-sanshool were pooled and dried by rotary evaporation. Lastly, all of the samples were determined by HPLC. The yield and recovery rates of hydroxyl-α-sanshool in the p-E-PEE were 12.42% and 121.65%, respectively, and the purity was 98.34%. Additionally, compared with E-PEE, the purity of hydroxyl-α-sanshool in the purification of E-PEE (p-E-PEE) increased by 88.30%. In summary, this study provides a simple, rapid, economical, and effective approach to the separation of high-purity hydroxyl-α-sanshool.


Assuntos
Zanthoxylum , Zanthoxylum/química , Sílica Gel , Extratos Vegetais/química , Cromatografia
15.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446158

RESUMO

Pellicle biofilm-forming bacteria Bacillus amyloliquefaciens are the major spoilage microorganisms of soy products. Due to their inherent resistance to antibiotics and disinfectants, pellicle biofilms formed are difficult to eliminate and represent a threat to food safety. Here, we assessed linalool's ability to prevent the pellicle of two spoilage B. amyloliquefaciens strains. The minimum biofilm inhibitory concentration (MBIC) of linalool against B. amyloliquefaciens DY1a and DY1b was 4 µL/mL and 8 µL/mL, respectively. The MBIC of linalool had a considerable eradication rate of 77.15% and 83.21% on the biofilm of the two strains, respectively. Scanning electron microscopy observations revealed that less wrinkly and thinner pellicle biofilms formed on a medium supplemented with 1/2 MBIC and 1/4 MBIC linalool. Also, linalool inhibited cell motility and the production of extracellular polysaccharides and proteins of the biofilm matrix. Furthermore, linalool exposure reduced the cell surface hydrophobicity, zeta potential, and cell auto-aggregation of B. amyloliquefaciens. Molecular docking analysis demonstrated that linalool interacted strongly with quorum-sensing ComP receptor and biofilm matrix assembly TasA through intermolecular hydrogen bonds, hydrophobic contacts, and van der Waals forces interacting with site residues. Overall, our findings suggest that linalool may be employed as a potential antibiofilm agent to control food spoilage B. amyloliquefaciens.


Assuntos
Bacillus amyloliquefaciens , Simulação de Acoplamento Molecular , Biofilmes
16.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836694

RESUMO

Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.


Assuntos
Solventes Eutéticos Profundos , Polifenóis , Polifenóis/análise , Solventes/química , Alimentos , Tecnologia
17.
Zhongguo Zhong Yao Za Zhi ; 48(2): 311-320, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36725220

RESUMO

Atherosclerosis(AS) is the common pathological basis of many ischemic cardiovascular diseases, and its formation process involves various aspects such as vascular endothelial injury and platelet activation. Vascular endothelial injury is the initiating factor of AS plaque. Monocytes are recruited to differentiate into macrophages at the damaged endothelial cells, which absorb oxidized low-density lipoprotein(ox-LDL) and slowly transform into foam cells. Smooth muscle cells(SMCs) proliferate and migrate continuously. As the only cell producing interstitial collagen fibers in the fibrous cap, SMCs largely determine whether the plaque ruptured or not. The amplifying inflammatory response during the formation of AS recruits platelets to adhere to the damaged area of vascular endothelium and stimulates excessive platelet aggregation. Autophagy activity is associated with vascular lesions and abnormal platelet activation, and excessive autophagy is considered to be a negative factor for plaque stability. Therefore, precise regulation of different types of vascular autophagy and platelet autophagy to treat AS may provide a new therapeutic perspective for the prevention and treatment of atherosclerotic ischemic cardiovascular disease. Currently, treatment strategies for AS still focus on lowering lipid levels with high-intensity statins, which often cause significant side effects. Therefore, the development of safer and more effective drugs and treatment modes is the focus of current research. Traditional Chinese medicine and natural compounds have the potential to treat AS by targeted autophagy, and have been playing an increasingly important role in the prevention and treatment of cardiovascular diseases in China. This paper summarizes the experimental studies on different vascular cell types and platelet autophagy in AS, and sums up the published research results on targeted autophagy of traditional Chinese medicine and natural plant compounds to regulate AS, providing new ideas for further research.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Células Endoteliais/metabolismo , Medicina Tradicional Chinesa , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Lipoproteínas LDL/metabolismo , Endotélio Vascular , Autofagia
18.
Angew Chem Int Ed Engl ; 62(49): e202313817, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37852936

RESUMO

An epoxycyclohexenone (ECH) moiety occurs in natural products of both bacteria and ascomycete and basidiomycete fungi. While the enzymes for ECH formation in bacteria and ascomycetes have been identified and characterized, it remained obscure how this structure is biosynthesized in basidiomycetes. In this study, we i) identified a genetic locus responsible for panepoxydone biosynthesis in the basidiomycete mushroom Panus rudis and ii) biochemically characterized PanH, the cytochrome P450 enzyme catalyzing epoxide formation in this pathway. Using a PanH-producing yeast as a biocatalyst, we synthesized a small library of bioactive ECH compounds as a proof of concept. Furthermore, homology modeling, molecular dynamics simulation, and site directed mutation revealed the substrate specificity of PanH. Remarkably, PanH is unrelated to ECH-forming enzymes in bacteria and ascomycetes, suggesting that mushrooms evolved this biosynthetic capacity convergently and independently of other organisms.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Agaricales/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Biocatálise , Basidiomycota/genética , Ascomicetos/metabolismo , Bactérias/metabolismo , Especificidade por Substrato
19.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1913-1920, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35534262

RESUMO

This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.


Assuntos
Metais Pesados , Sagittaria , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fígado , Masculino , Metais Pesados/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Polissacarídeos/farmacologia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sagittaria/genética , Sagittaria/metabolismo
20.
J Am Chem Soc ; 143(29): 10860-10864, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279083

RESUMO

Chiral chromophores and their ordered assemblies are intriguing for yielding circularly polarized luminescence (CPL) and exploring intrinsic structure-light emission relationships. With the extensively studied chiral organic molecules and inorganic nanoparticle assemblies for the amplified CPL, the assemblies of copper halide hybrid clusters have attracted intensive attention due to their potential efficient CPL. Here, we report robust chiral phosphine-copper iodide hybrid clusters and their layered assemblies in crystalline states for amplified CPL. We reveal that the intermolecular interactions endow the clusters with the capability of assembling into chiral crystalline CPL materials, including hexagonal platelet-shaped microcrystals (glum ≈ 9.5 × 10-3) and highly oriented crystalline films (glum ≈ 5 × 10-3). Owing to the high crystalline feature of the thin film, we demonstrate an electroluminescent device with bright electroluminescence (1200 cd m-2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA