Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 23(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202070

RESUMO

Opportunistic beamforming (OBF) is an effective technique to improve the spectrum efficiencies (SEs) of multiple-input-multiple-output (MIMO) systems, which can obtain multiuser diversity gains with both low computation complexity and feedback information. To serve multiple users simultaneously, many multiple-access schemes have been researched in OBF. However, for most of the multiple-access schemes, the SEs are not satisfactory. To further improve the SE, this paper proposes a downlink multiuser OBF system, where both orthogonal frequency division multiplexing (OFDM) and non-orthogonal multiple-access (NOMA) methods are applied. The closed-form expressions of the equivalent channels and SE are derived in frequency selective fading channels. Then, an optimization problem is formulated to maximize the SE, although the optimization problem is non-convex and hard to solve. To obtain the solution, we divide the optimization problem into two suboptimal issues, and then a joint iterative algorithm is applied. In the proposed optimization scheme, the subcarrier mapping ϑ, user pairing knc and allocated power Pknc are determined to maximize spectrum efficiency (SE) and reduce bit error ratio (BER). According to numerical results, the proposed method achieves approximately 5 dB gain on both SE and BER, compared to the existing beamforming methods with low feedback information. Moreover, the SE of the proposed method is approximately 2 (bps/Hz) higher than sparse code multiple-access (SCMA), when the number of waiting users and the ratio of transmit power to noise variance are respectively 10 and 20 dB. It is indicated that the proposed scheme can achieve high and low BER with the limited feedback and computation complexity, regardless of the transmit power and the number of waiting users.

2.
Nucleic Acids Res ; 38(16): 5419-31, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20435673

RESUMO

Differences in the substrate specificity of mammalian family X DNA polymerases are proposed to partly depend on a loop (loop 1) upstream of the polymerase active site. To examine if this is the case in DNA polymerase λ (pol λ), here we characterize a variant of the human polymerase in which nine residues of loop 1 are replaced with four residues from the equivalent position in pol ß. Crystal structures of the mutant enzyme bound to gapped DNA with and without a correct dNTP reveal that the change in loop 1 does not affect the overall structure of the protein. Consistent with these structural data, the mutant enzyme has relatively normal catalytic efficiency for correct incorporation, and it efficiently participates in non-homologous end joining of double-strand DNA breaks. However, DNA junctions recovered from end-joining reactions are more diverse than normal, and the mutant enzyme is substantially less accurate than wild-type pol λ in three different biochemical assays. Comparisons of the binary and ternary complex crystal structures of mutant and wild-type pol λ suggest that loop 1 modulates pol λ's fidelity by controlling dNTP-induced movements of the template strand and the primer-terminal 3'-OH as the enzyme transitions from an inactive to an active conformation.


Assuntos
DNA Polimerase beta/química , Sequência de Aminoácidos , Biocatálise , Sequência Conservada , Cristalografia por Raios X , DNA/biossíntese , DNA Polimerase beta/metabolismo , Desoxirribonucleotídeos/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
3.
Nucleic Acids Res ; 37(12): 4055-62, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19420065

RESUMO

XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5' or 3' overhangs, and no joining at all of partially complementary 3' overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase lambda, but was restored by addition of either polymerase lambda or polymerase mu. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex.


Assuntos
DNA Polimerase beta/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Extratos Celulares , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Serina/metabolismo
4.
Nucleic Acids Res ; 36(9): 2895-905, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18385158

RESUMO

Ionizing radiation induces various clustered DNA lesions, including double-strand breaks (DSBs) accompanied by nearby oxidative base damage. Previous work showed that, in HeLa nuclear extracts, DSBs with partially complementary 3' overhangs and a one-base gap in each strand are accurately rejoined, with the gaps being filled by DNA polymerase lambda. To determine the possible effect of oxidative base damage on this process, plasmid substrates were constructed containing overhangs with 8-oxoguanine or thymine glycol in base-pairing positions of 3-base (-ACG or -GTA) 3' overhangs. In this context, 8-oxoguanine was well tolerated by the end-joining machinery when present at one end of the break, but not when present at both ends. Thymine glycol was less well tolerated than 8-oxoguanine, reducing gap filling and accurate rejoining by at least 10-fold. The results suggest that complex DSBs can be accurately rejoined despite the presence of accompanying base damage, but that nonplanar bases constitute a major barrier to this process and promote error-prone joining. A chimeric DNA polymerase, in which the catalytic domain of polymerase lambda was replaced with that of polymerase beta, could not substitute for polymerase lambda in these assays, suggesting that this domain is specifically adapted for gap filling on aligned DSB ends.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase beta/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Timina/análogos & derivados , Pareamento Incorreto de Bases , Extratos Celulares , Núcleo Celular/metabolismo , DNA Polimerase beta/genética , Guanina/química , Células HeLa , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Timina/química
5.
Nucleic Acids Res ; 36(10): 3354-65, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18440975

RESUMO

Previous work showed that, in the presence of DNA-dependent protein kinase (DNA-PK), Artemis slowly trims 3'-phosphoglycolate-terminated blunt ends. To examine the trimming reaction in more detail, long internally labeled DNA substrates were treated with Artemis. In the absence of DNA-PK, Artemis catalyzed extensive 5'-->3' exonucleolytic resection of double-stranded DNA. This resection required a 5'-phosphate, but did not require ATP, and was accompanied by endonucleolytic cleavage of the resulting 3' overhang. In the presence of DNA-PK, Artemis-mediated trimming was more limited, was ATP-dependent and did not require a 5'-phosphate. For a blunt end with either a 3'-phosphoglycolate or 3'-hydroxyl terminus, endonucleolytic trimming of 2-4 nucleotides from the 3'-terminal strand was accompanied by trimming of 6 nt from the 5'-terminal strand. The results suggest that autophosphorylated DNA-PK suppresses the exonuclease activity of Artemis toward blunt-ended DNA, and promotes slow and limited endonucleolytic trimming of the 5'-terminal strand, resulting in short 3' overhangs that are trimmed endonucleolytically. Thus, Artemis and DNA-PK can convert terminally blocked DNA ends of diverse geometry and chemical structure to a form suitable for polymerase-mediated patching and ligation, with minimal loss of terminal sequence. Such processing could account for the very small deletions often found at DNA double-strand break repair sites.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Endodesoxirribonucleases/metabolismo , DNA/química , DNA/metabolismo , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Soros Imunes/farmacologia , Mutação , Fosfatos/química
6.
Nucleic Acids Res ; 35(12): 3869-78, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17526517

RESUMO

Previous work suggested that phosphorylation of DNA-PKcs at several serine/threonine (S/T) residues at positions 2609-2647 promotes DNA-PK-dependent end joining. In an attempt to clarify the role of such phosphorylation, end joining was examined in extracts of DNA-PKcs-deficient M059J cells. Joining of ends requiring gap filling prior to ligation was completely dependent on complementation of these extracts with exogenous DNA-PKcs. DNA-PKcs with either S/T --> A or S/T --> D substitutions at all six sites in the 2609-2647 cluster also supported end joining, but with markedly lower efficiency than wild-type protein. The residual end joining was greater with the S/T --> D-substituted than with the S/T --> A-substituted protein. A specific inhibitor of the kinase activity of DNA-PK, KU57788, completely blocked end joining promoted by wild type as well as both mutant forms of DNA-PK, while inhibition of ATM kinase did not. The fidelity of end joining was not affected by the mutant DNA-PKcs alleles or the inhibitors. Overall, the results support a role for autophosphorylation of the 2609-2647 cluster in promoting end joining and controlling the accessibility of DNA ends, but suggest that DNA-PK-mediated phosphorylation at other sites, on either DNA-PKcs or other proteins, is at least as important as the 2609-2647 cluster in regulating end joining.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/metabolismo , Serina/metabolismo , Treonina/metabolismo , Substituição de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Catálise , Proteínas de Ciclo Celular/metabolismo , Extratos Celulares , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Radiat Res ; 174(3): 274-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20726725

RESUMO

Previous work showed that in human nuclear extracts, double-strand break substrates bearing partially complementary (-ACG) 3'-phosphoglycolate (PG)-terminated 3' overhangs are joined by a mechanism involving annealing of the terminal CG dinucleotides, PG removal, single-base gap filling and ligation. However, in these extracts only a minority of the breaks are rejoined, and most of the 3'-PG termini remain intact even after several hours. To determine whether the presence of a persistent 3'-PG prevents patching and ligation of the opposite strand, a substrate was constructed with two -ACG overhangs, one PG-terminated and one hydroxyl-terminated. after incubation in HeLa cell nuclear extracts, two major repair products of similar yield were formed: a fully repaired duplex and a nicked duplex in which the initial 3'-PG terminus remained intact. These results indicate that patching and ligation can proceed to completion in the unmodified strand despite persistence of the 3'-PG-terminated break in the opposite strand. The break in the PG-containing strand could then presumably be rejoined by a single-strand break repair pathway.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/genética , Glicolatos/química , Sequência de Bases , Eletroforese em Gel de Poliacrilamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA