Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1367645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595768

RESUMO

In Rosaceae, the replacement of the traditional four-subfamily division (Amygdaloideae or Prunoideae, Maloideae, Rosoideae, and Spiraeoideae) by the three-subfamily division (Dryadoideae, Rosoideae, and Amygdaloideae), the circumscription, systematic position, and phylogeny of genera in Maleae need to be reconsidered. The study aimed to circumscribe Maleae, pinpoint its systematic position, and evaluate the status of all generally accepted genera in the tribe using complete chloroplast genome data. Results indicated that Maleae consisted of pome-bearing genera that belonged to Maloideae as well as four genera (Gillenia, Kageneckia, Lindleya, and Vauquelinia) that were formerly considered to be outside Maloideae. The tribe could be subdivided into four subtribes: Gilleniinae (Gillenia), Lindleyinae (Kageneckia and Lindleya), Vaugueliniinae (Vauquelinia), and Malinae (all other genera; the core Maleae). Among the 36 recognized genera, Aria, Docyniopsis, Chamaemespilus, and Mespilus were not considered distinct and more research is needed to determine the taxonomic status of Rhaphiolepis from Eriobotrya. Within the core Maleae, five groups were revealed, whereas Sorbus L. was split as its members belonged to different groups.

2.
Genes (Basel) ; 15(3)2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540352

RESUMO

Maize(Zea mays. L) is a globally important crop, and understanding its genetic diversity is crucial for plant breeding phylogenetic analyses and comparative genetics. While nuclear markers have been extensively used for mapping agriculturally important genes, they are limited in recognizing characteristics, such as cytoplasmic male sterility and reciprocal cross hybrids. In this study, we performed next-generation sequencing of 176samples, and the maize cultivars represented five distinct groups. A total of 89 single nucleotide polymorphisms (SNPs) and 11 insertion/deletion polymorphisms (InDels) were identified. To enable high-throughput detection, we successfully amplified and confirmed 49 SNP and InDel markers, which were defined as a Varietal Chloroplast Panel (VCP) using the Kompetitive Allele Specific PCR (KASP). The specific markers provided a valuable tool for identifying chloroplast groups. The verification experiment, focusing on the identification of reciprocal cross hybrids and cytoplasmic male sterility hybrids, demonstrated the significant advantages of VCP markers in maternal inheritance characterization. Furthermore, only a small subset of these markers is needed to provide useful information, showcasing the effectiveness of these markers in elucidating the artificial selection process of elite maize lines.


Assuntos
Genoma de Cloroplastos , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Mapeamento Cromossômico , Marcadores Genéticos/genética , Zea mays/genética , Genótipo , Filogenia , Genoma de Planta/genética , Melhoramento Vegetal
3.
Sci Rep ; 14(1): 16329, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009713

RESUMO

Microplastics (MPs) are defined as plastic particles smaller than 5 mm in size, and nanoplastics (NPs) are those MPs with a particle size of less than 1000 nm or 100 nm. The prevalence of MPs in the environment and human tissues has raised concerns about their potential negative effects on human health. Macrophages are the major defence against foreign substances in the intestine, and can be polarized into two types: the M1 phenotype and the M2 phenotype. However, the effect of NPs on the polarization of macrophages remains unclear. Herein, we selected polystyrene, one of the most plastics in the environment and controlled the particle sizes at 50 nm and 500 nm respectively to study the effects on the polarization of macrophages. We used mouse RAW264.7 cell line models in this macrophage-associated study. Experiments on cell absorption showed that macrophages could quickly ingest polystyrene nanoplastics of both diameters with time-dependent uptake. Compared to the untreated group and 10 µg/mL treatment group, macrophages exposed to 50 µg/mL groups (50 nm and 500 nm) had considerably higher levels of CD86, iNOS, and TNF-α, but decreased levels of aCD206, IL-10, and Arg-1. According to these findings, macrophage M1 and M2 polarization can both be induced and inhibited by 50 µg/mL 50 nm and 500 nm polystyrene nanoplastics. This work provided the first evidence of a possible MPs mode of action with appropriate concentration and size through the production of polarized M1, providing dietary and environmental recommendations for people, particularly those with autoimmune and autoinflammatory illnesses.


Assuntos
Macrófagos , Microplásticos , Nanopartículas , Tamanho da Partícula , Poliestirenos , Poliestirenos/química , Camundongos , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Células RAW 264.7 , Nanopartículas/química , Inflamação/metabolismo
4.
Front Immunol ; 15: 1286973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361940

RESUMO

Background: The prognosis of anti-melanoma differentiation-associated gene 5 positive dermatomyositis (anti-MDA5+DM) is poor and heterogeneous. Rapidly progressive interstitial lung disease (RP-ILD) is these patients' leading cause of death. We sought to develop prediction models for RP-ILD risk in anti-MDA5+DM patients. Methods: Patients with anti-MDA5+DM were enrolled in two cohorts: 170 patients from the southern region of Jiangsu province (discovery cohort) and 85 patients from the northern region of Jiangsu province (validation cohort). Cox proportional hazards models were used to identify risk factors of RP-ILD. RP-ILD risk prediction models were developed and validated by testing every independent prognostic risk factor derived from the Cox model. Results: There are no significant differences in baseline clinical parameters and prognosis between discovery and validation cohorts. Among all 255 anti-MDA5+DM patients, with a median follow-up of 12 months, the incidence of RP-ILD was 36.86%. Using the discovery cohort, four variables were included in the final risk prediction model for RP-ILD: C-reactive protein (CRP) levels, anti-Ro52 antibody positivity, short disease duration, and male sex. A point scoring system was used to classify anti-MDA5+DM patients into moderate, high, and very high risk of RP-ILD. After one-year follow-up, the incidence of RP-ILD in the very high risk group was 71.3% and 85.71%, significantly higher than those in the high-risk group (35.19%, 41.69%) and moderate-risk group (9.54%, 6.67%) in both cohorts. Conclusions: The CROSS model is an easy-to-use prediction classification system for RP-ILD risk in anti-MDA5+DM patients. It has great application prospect in disease management.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Masculino , Dermatomiosite/complicações , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Helicase IFIH1 Induzida por Interferon , Estudos Retrospectivos , Autoanticorpos
5.
Imeta ; 2(1): e74, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868351

RESUMO

As primary producers, plants provide food, oxygen, and other resources for global ecosystems, and should therefore be given priority in biodiversity protection. Most biodiversity research focuses on biodiversity hotspots, while biodiversity coldspots, such as deserts, are largely ignored. We propose that the factors shaping plant species diversity differ between biodiversity hot spots and cold spots, especially for desert ecosystems. To test this hypothesis, we investigated plant species diversity along the Modern Silk Road in the Northwest China desert, an area characterized by low precipitation, scarce vegetation, a limited number of species, and variable human activities. Surface soil was sampled from 144 plots, environmental DNA (eDNA) was extracted from soil samples, and seed plant species were identified using DNA metabarcoding technology. A total of 671 seed plant species were detected, which was more diverse than indicated by plot survey data. Plant species diversity gradually decreased from east to west along the Silk Road. In this area, temperature determines plant species diversity more than precipitation. Additionally, human activity has altered plant species diversity by introducing crops and invasive plants and eliminating environmentally adapted indigenous plants. Our results demonstrate the potential of eDNA metabarcoding technology for plant species diversity surveying. Desert plants have adapted to dry environments by relying on underground water or utilizing occasional rainfall as ephemerals, which are often not visible during surface surveys because of their short aboveground life cycle but can be detected with eDNA metabarcoding technology. Groundwater maintenance and human activity control are recommended for plant species diversity conservation and desertification control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA