Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Genet ; 13: 1087294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685976

RESUMO

Essential proteins play important roles in the development and survival of organisms whose mutations are proven to be the drivers of common internal diseases having higher prevalence rates. Due to high costs of traditional biological experiments, an improved Transfer Neural Network (TNN) was designed to extract raw features from multiple biological information of proteins first, and then, based on the newly-constructed Transfer Neural Network, a novel computational model called TNNM was designed to infer essential proteins in this paper. Different from traditional Markov chain, since Transfer Neural Network adopted the gradient descent algorithm to automatically obtain the transition probability matrix, the prediction accuracy of TNNM was greatly improved. Moreover, additional antecedent memory coefficient and bias term were introduced in Transfer Neural Network, which further enhanced both the robustness and the non-linear expression ability of TNNM as well. Finally, in order to evaluate the identification performance of TNNM, intensive experiments have been executed based on two well-known public databases separately, and experimental results show that TNNM can achieve better performance than representative state-of-the-art prediction models in terms of both predictive accuracies and decline rate of accuracies. Therefore, TNNM may play an important role in key protein prediction in the future.

2.
Comput Math Methods Med ; 2018: 6789089, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853986

RESUMO

MOTIVATION: Increasing studies have demonstrated that many human complex diseases are associated with not only microRNAs, but also long-noncoding RNAs (lncRNAs). LncRNAs and microRNA play significant roles in various biological processes. Therefore, developing effective computational models for predicting novel associations between diseases and lncRNA-miRNA pairs (LMPairs) will be beneficial to not only the understanding of disease mechanisms at lncRNA-miRNA level and the detection of disease biomarkers for disease diagnosis, treatment, prognosis, and prevention, but also the understanding of interactions between diseases and LMPairs at disease level. RESULTS: It is well known that genes with similar functions are often associated with similar diseases. In this article, a novel model named PADLMP for predicting associations between diseases and LMPairs is proposed. In this model, a Disease-LncRNA-miRNA (DLM) tripartite network was designed firstly by integrating the lncRNA-disease association network and miRNA-disease association network; then we constructed the disease-LMPairs bipartite association network based on the DLM network and lncRNA-miRNA association network; finally, we predicted potential associations between diseases and LMPairs based on the newly constructed disease-LMPair network. Simulation results show that PADLMP can achieve AUCs of 0.9318, 0.9090 ± 0.0264, and 0.8950 ± 0.0027 in the LOOCV, 2-fold, and 5-fold cross validation framework, respectively, which demonstrate the reliable prediction performance of PADLMP.


Assuntos
Predisposição Genética para Doença , Neoplasias/genética , RNA Longo não Codificante , Área Sob a Curva , Humanos , MicroRNAs , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA