Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 2015-2023, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38230912

RESUMO

A high-performance and reusable nonnoble metal catalyst for catalyzing sodium borohydride (NaBH4) hydrolysis to generate H2 is heralded as a nuclear material for the fast-growing hydrogen economy. Boron vacancy serves as a flexible defect site that can effectively regulate the catalytic hydrolysis performance. Herein, we construct a uniformly dispersed and boron vacancy-rich nonnoble metal Co2B-Fe2B catalyst via the hard template method. The optimized Co2B-Fe2B exhibits superior performance toward NaBH4 hydrolysis, with a high hydrogen generation rate (5315.8 mL min-1 gcatalyst-1), relatively low activation energy (35.4 kJ mol-1), and remarkable cycling stability, outperforming the majority of reported catalysts. Studies have shown that electron transfer from Fe2B to Co2B, as well as abundant boron defects, can effectively modulate the charge carrier concentration of Co2B-Fe2B catalysts. Density functional theory calculations confirm that the outer electron cloud density of Co2B is higher than that of Fe2B, among which Co2B with high electron cloud density can selectively adsorb BH4- ions, while the electron-deficient Fe2B is favorable for capturing H2O molecules, therefore synergistically promoting the catalytic NaBH4 hydrolysis to produce H2.

2.
World J Clin Oncol ; 15(2): 175-177, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38455138

RESUMO

Zhuo et al looked into the part of transmembrane 9 superfamily member 1 (TM9SF1) in bladder cancer (BC), and evaluated if it can be used as a therapeutic target. They created a permanent BC cell line and tested the effects of TM9SF1 overexpression and suppression on BC cell growth, movement, invasion, and cell cycle advancement. Their results show that TM9SF1 can boost the growth, movement, and invasion of BC cells and their access into the G2/M stage of the cell cycle. This research gives a novel direction and concept for targeted therapy of BC.

3.
Environ Sci Process Impacts ; 26(5): 915-927, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38618896

RESUMO

There is growing concern about the transfer of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in airborne particulate matter. In this study, we investigated the effects of various types of carbonaceous particulate matter (CPM) on the transfer of ARGs in vitro. The results showed that CPM promoted the transfer of ARGs, which was related to the concentration and particle size. Compared with the control group, the transfer frequency was 95.5, 74.7, 65.4, 14.7, and 3.8 times higher in G (graphene), CB (carbon black), NGP (nanographite powder), GP1.6 (graphite powder 1.6 micron), and GP45 (graphite powder 45 micron) groups, respectively. Moreover, the transfer frequency gradually increased with the increase in CPM concentration, while there was a negative relationship between the CPM particle size and conjugative transfer frequency. In addition, the results showed that CPM could promote the transfer of ARGs by increasing ROS, as well as activating the SOS response and expression of conjugative transfer-related genes (trbBp, trfAp, korA, kroB, and trbA). These findings are indicative of the potential risk of CPM for the transfer of ARGs in the environment, enriching our understanding of environmental pollution and further raising awareness of environmental protection.


Assuntos
Poluentes Atmosféricos , Transferência Genética Horizontal , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Resistência Microbiana a Medicamentos/genética , Tamanho da Partícula , Genes Bacterianos , Farmacorresistência Bacteriana/genética
4.
J Hazard Mater ; 472: 134495, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714053

RESUMO

Nanopore sequencing is extremely promising for the high-throughput detection of pathogenic bacteria in natural water; these bacteria may be transmitted to humans and cause waterborne infectious diseases. However, the concentration of pathogenic bacteria in natural water is too low to be detected directly by nanopore sequencing. Herein, we developed a mica filter to enrich over 85% of bacteria from > 10 L of natural water in 100 min, which led to a 102-fold improvement in the assay limits of the MinION sequencer for assessing pathogenic bacteria. Correspondingly, the sequencing time of S. Typhi detection at a concentration as low as 105 CFU/L was reduced from traditional 48 h to 3 h. The bacterial adsorption followed pseudo-first-order kinetics and the successful adsorption of bacteria to the mica filter was confirmed by scanning electron microscopy and Fourier infrared spectroscopy et al. The mica filter remained applicable to a range of water samples whose quality parameters were within the EPA standard limits for freshwater water. The mica filter is thus an effective tool for the sensitive and rapid monitoring of pathogenic bacteria by nanopore sequencing, which can provide timely alerts for waterborne transmission events.


Assuntos
Microbiologia da Água , Silicatos de Alumínio/química , Filtração/instrumentação , Sequenciamento por Nanoporos/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Adsorção , Monitoramento Ambiental/métodos , Nanoporos
5.
Chemosphere ; 362: 142607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876330

RESUMO

Cadmium (Cd) is a ubiquitous pollutant that poses a potential threat to human health. Monitoring Cd(II) in drinking water has significant implications for preventing potential threats of Cd(II) to human. However, the weak signal output and response to nontarget interference limit the detection of Cd(II) using bacterial biosensors. In this study, to enable sensitive and specific detection of Cd(II) in water, a stable whole-cell biosensor, K12-PMP-luxCDABE-△cysI, was constructed in a dual-promoter mode by fusing the mercury promoter Pmer, regulatory gene merR(m), and luciferase gene luxCDABE into the E.coli chromosome based on CRISPR/Cas9 gene editing technology. By knocking out the cadmium-resistance-gene cysI, the sensitivity of the biosensor to Cd(II) was further enhanced. The constructed E. coli biosensor K12-PMP-luxCDABE-△cysI exhibited good nonlinear responses to 0.005-2 mg/L Cd(II). Notably, among the three constructed E. coli biosensor, it exhibited the strongest fluorescence intensity, with the limit of detection meeting the allowable limit for Cd(II) in drinking water. Simultaneously, it could specifically detect Cd(II). Nontarget metal ions, such as Zn(II), Hg(II), and Pb(II), did not affect its performance. Furthermore, it exhibited superior performance in detecting Cd(II) in real drinking water samples by avoiding background interference, and showed excellent stability with the relative standard deviation under 5%. Thus, K12-PMP-luxCDABE-△cysI holds promise as a potential tool for the detection of Cd(II) in drinking water.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Cádmio , Água Potável , Escherichia coli , Poluentes Químicos da Água , Água Potável/microbiologia , Técnicas Biossensoriais/métodos , Escherichia coli/genética , Cádmio/análise , Poluentes Químicos da Água/análise , Edição de Genes , Limite de Detecção , Monitoramento Ambiental/métodos
6.
Water Res ; 262: 122032, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39024671

RESUMO

Groundwater on the Tibetan Plateau is a critical water resource to people in Asia. However, its prevalence of antibiotic-resistant pathogens (ARPs), bacterial resistome and their driving factors remain unknown. Using metagenomics analysis, a hotspot of antibiotic-resistance genes (ARGs) and last-resort ARGs (LARGs) with a total of 639 subtypes was identified in the groundwater. Importantly, 164 metagenome-assembled genomes (MAGs) which possessed both ARGs and virulence factors (VFs) were assigned as potential ARPs, with the most abundant species being Acinetobacter johnsonii and Acinetobacter pittii. A total of 157 potential ARPs, involving Escherichia coli, were predicted as "natural" ARGs supercarriers. Thirty-six ARPs dominated by the genus Acinetobacter and Pseudomonas were found to harbour LARGs. Co-localizations of the ARG-mobile genetic elements (MGEs) showed that MGEs were significantly associated with ARGs in the ARPs, which suggests ARPs play a prominent role in ARG dissemination. Notably, latitudinal gradient is a driving factor in the occurrence of ARGs and ARPs. The average abundances of ARGs and ARP decreased as the latitude increased, with the highest abundance occurring in the region between 28.6◦N and 29.5◦N. MetaCompare further revealed health risks associated with the resistome decreased as the latitudes increased. These findings indicated different health risks associated with ARPs and bacterial resistome in latitudinal gradient groundwater. They raise the concerns of mitigating ARPs risk in groundwater on the Tibetan Plateau.


Assuntos
Altitude , Água Subterrânea , Metagenômica , Água Subterrânea/microbiologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Tibet , Resistência Microbiana a Medicamentos/genética
7.
Sci Total Environ ; 933: 173221, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750746

RESUMO

The presence of Stenotrophomonas maltophilia in aquatic environments poses great health risks to immunocompromised individuals because of its multidrug resistance and resultant high mortality. However, a significant gap exists in the isolation and understanding of colistin-resistant S. maltophilia in aquatic environments. In this study, nine colistin-resistant S. maltophilia strains isolated from natural lakes were explored, and their phylogenetic relationship, biofilm formation, virulence, and antibiotic resistance profiles and underlying genetic determinants were assessed. After genome analysis, besides known multi-locus sequence typing (MLST) of ST532, new assigned ST965 and ST966 which phylogenetically clustered into soil isolates were found firstly. All the isolates exhibited resistance to multiple antibiotics, including aminoglycosides, beta-lactams, tetracyclines, and even colistin, with the highest minimum inhibitory concentration (MIC) against colistin reaching 640 mg/L. Comparative genomic analysis revealed aph(3')-Iic, blaL1, tetT, phoP, mcr-3, arnA, pmrE, and efflux pump genes as the genetic determinants underlying this multidrug resistance. Notably, the biofilm-forming capacities of the newly discovered ST965 and ST966 isolates were significant stronger than those of the known ST532 isolates (p < 0.01), resulting in the death of over 50 % of the Galleria mellonella population within 1 day of injection. The ST965 isolates demonstrated the highest virulence against G. mellonella, followed by the ST966 isolates and ST532 isolates which was phylogenetically clustered with clinical isolates, indicating that the novel S. maltophilia strains of ST965 and ST966 may pose considerable health risks to humans. Our findings provide insights into colistin-resistant S. maltophilia in aquatic environments and raise concerns about the health risks posed by the newly assigned sequence types of colistin-resistant S. maltophilia with potential high virulence in natural aquatic environments.


Assuntos
Antibacterianos , Colistina , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/efeitos dos fármacos , Colistina/farmacologia , Antibacterianos/farmacologia , Virulência/genética , Testes de Sensibilidade Microbiana , Filogenia , Biofilmes/efeitos dos fármacos , Lagos/microbiologia , Animais , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genética
8.
J Hazard Mater ; 469: 134075, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508114

RESUMO

Chlorine-resistant bacteria (CRB) in drinking water treatment plants (DWTPs) jeopardize water quality and pose a potential risk to human health. However, the specific response of CRB to chlorination and chloramination remains uncharacterized. Therefore, we analyzed 16 S rRNA sequencing data from water samples before and after chlorination and chloramination taken between January and December 2020. Proteobacteria and Firmicutes dominated all finished water samples. After chloramination, Acinetobacter, Pseudomonas, Methylobacterium, Ralstonia, and Sphingomonas were the dominant CRB, whereas Ralstonia, Bacillus, Acinetobacter, Pseudomonas, and Enterococcus were prevalent after chlorination. Over 75% of the CRB e.g. Acinetobacter, Pseudomonas, Bacillus, and Enterococcus were shared between the chlorination and chloramination, involving potentially pathogens, such as Acinetobacter baumannii and Pseudomonas aeruginosa. Notably, certain genera such as Faecalibacterium, Geobacter, and Megasphaera were enriched as strong CRB after chloramination, whereas Vogesella, Flavobacterium, Thalassolituus, Pseudoalteromonas, and others were enriched after chlorination according to LEfSe analysis. The shared CRB correlated with temperature, pH, and turbidity, displaying a seasonal pattern with varying sensitivity to chlorination and chloramination in cold and warm seasons. These findings enhance our knowledge of the drinking water microbiome and microbial health risks, thus enabling better infectious disease control through enhanced disinfection strategies in DWTPs.


Assuntos
Bacillus , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Cloro/química , Halogenação , Halogênios , Desinfecção , Flavobacterium , Cloraminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA