Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Nature ; 617(7960): 377-385, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138075

RESUMO

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Melanoma , Microbiota , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transplante de Microbiota Fecal , Vida Livre de Germes , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/imunologia , Melanoma/microbiologia , Melanoma/terapia , Ligação Proteica/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
2.
Nat Methods ; 20(11): 1693-1703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770710

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) screening coupled with single-cell RNA sequencing has emerged as a powerful tool to characterize the effects of genetic perturbations on the whole transcriptome at a single-cell level. However, due to its sparsity and complex structure, analysis of single-cell CRISPR screening data is challenging. In particular, standard differential expression analysis methods are often underpowered to detect genes affected by CRISPR perturbations. We developed a statistical method for such data, called guided sparse factor analysis (GSFA). GSFA infers latent factors that represent coregulated genes or gene modules; by borrowing information from these factors, it infers the effects of genetic perturbations on individual genes. We demonstrated through extensive simulation studies that GSFA detects perturbation effects with much higher power than state-of-the-art methods. Using single-cell CRISPR data from human CD8+ T cells and neural progenitor cells, we showed that GSFA identified biologically relevant gene modules and specific genes affected by CRISPR perturbations, many of which were missed by existing methods, providing new insights into the functions of genes involved in T cell activation and neurodevelopment.


Assuntos
Fenômenos Biológicos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Linfócitos T CD8-Positivos , Teorema de Bayes , Transcriptoma , Sistemas CRISPR-Cas
3.
Blood ; 141(3): 231-237, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36322931

RESUMO

Germ line loss-of-function heterozygous mutations in the RUNX1 gene cause familial platelet disorder with associated myeloid malignancies (FPDMM) characterized by thrombocytopenia and a life-long risk of hematological malignancies. Although gene therapies are being considered as promising therapeutic options, current preclinical models do not recapitulate the human phenotype and are unable to elucidate the relative fitness of mutation-corrected and RUNX1-heterozygous mutant hematopoietic stem and progenitor cells (HSPCs) in vivo long term. We generated a rhesus macaque with an FPDMM competitive repopulation model using CRISPR/Cas9 nonhomologous end joining editing in the RUNX1 gene and the AAVS1 safe-harbor control locus. We transplanted mixed populations of edited autologous HSPCs and tracked mutated allele frequencies in blood cells. In both animals, RUNX1-edited cells expanded over time compared with AAVS1-edited cells. Platelet counts remained below the normal range in the long term. Bone marrows developed megakaryocytic dysplasia similar to human FPDMM, and CD34+ HSPCs showed impaired in vitro megakaryocytic differentiation, with a striking defect in polyploidization. In conclusion, the lack of a competitive advantage for wildtype or control-edited HSPCs over RUNX1 heterozygous-mutated HSPCs long term in our preclinical model suggests that gene correction approaches for FPDMM will be challenging, particularly to reverse myelodysplastic syndrome/ acute myeloid leukemia predisposition and thrombopoietic defects.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Animais , Humanos , Macaca mulatta , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Trombopoese , Fenótipo
4.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843465

RESUMO

Bioassay systems that can selectively detect biomarkers at both high and low levels are of great importance for clinical diagnosis. In this work, we report an enzyme electrode with an oxygen reduction reaction (ORR)-tolerant H2O2 reduction property and an air-liquid-solid triphase interface microenvironment by regulating the surface defects and wettability of nanoporous tin oxide (SnOx). The enzyme electrode allows the oxygen that is required for the oxidase catalytic reaction to be transported from the air phase to the reaction zone, which greatly enhances the enzymatic kinetics and increases the linear detection upper limit. Meanwhile, the ORR-tolerant H2O2 reduction property of SnOx catalysts achieved via oxygen vacancy engineering greatly reduces the interferent signals caused by oxygen and various easily oxidizable endogenous/exogenous species, which enables the selective detection of biomarkers at trace levels. The synergistic effect between these two novel qualities features a bioassay system with a wide dynamic linear range and high selectivity for the accurate detection of a wide range of biomarkers, such as glucose, lactic acid, uric acid, and galactose, offering the potential for reliable clinical diagnosis applications.

5.
J Am Chem Soc ; 146(10): 6706-6720, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421812

RESUMO

Two-dimensional (2D) halide perovskites are exquisite semiconductors with great structural tunability. They can incorporate a rich variety of organic species that not only template their layered structures but also add new functionalities to their optoelectronic characteristics. Here, we present a series of new methylammonium (CH3NH3+ or MA)-based 2D Ruddlesden-Popper perovskites templated by dimethyl carbonate (CH3OCOOCH3 or DMC) solvent molecules. We report the synthesis, detailed structural analysis, and characterization of four new compounds: MA2(DMC)PbI4 (n = 1), MA3(DMC)Pb2I7 (n = 2), MA4(DMC)Pb3I10 (n = 3), and MA3(DMC)Pb2Br7 (n = 2). Notably, these compounds represent unique structures with MA as the sole organic cation both within and between the perovskite sheets, while DMC molecules occupy a tight space between the MA cations in the interlayer. They form hydrogen-bonded [MA···DMC···MA]2+ complexes that act as spacers, preventing the perovskite sheets from condensing into each other. We report one of the shortest interlayer distances (∼5.7-5.9 Å) in solvent-incorporated 2D halide perovskites. Furthermore, the synthesized crystals exhibit similar optical characteristics to other 2D perovskite systems, including narrow photoluminescence (PL) signals. The density functional theory (DFT) calculations confirm their direct-band-gap nature. Meanwhile, the phase stability of these systems was found to correlate with the H-bond distances and their strengths, decreasing in the order MA3(DMC)Pb2I7 > MA4(DMC)Pb3I10 > MA2(DMC)PbI4 ∼ MA3(DMC)Pb2Br7. The relatively loosely bound nature of DMC molecules enables us to design a thermochromic cell that can withstand 25 cycles of switching between two colored states. This work exemplifies the unconventional role of the noncharged solvent molecule in templating the 2D perovskite structure.

6.
Clin Immunol ; 258: 109849, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008146

RESUMO

As one of the most abundant stromal cells, fibroblasts are primarily responsible for the production and remodeling of the extracellular matrix. Traditionally, fibroblasts have been viewed as quiescent cells. However, recent advances in multi-omics technologies have demonstrated that fibroblasts exhibit remarkable functional diversity at the single-cell level. Additionally, fibroblasts are heterogeneous in their origins, tissue locations, and transitions with stromal cells. The dynamic nature of fibroblasts is further underscored by the fact that disease stages can impact their heterogeneity and behavior, particularly in immune-mediated inflammatory diseases such as psoriasis, inflammatory bowel diseases, and rheumatoid arthritis, etc. Fibroblasts can actively contribute to the disease initiation, progression, and relapse by responding to local microenvironmental signals, secreting downstream inflammatory factors, and interacting with immune cells during the pathological process. Here we focus on the development, plasticity, and heterogeneity of fibroblasts in inflammation, emphasizing the need for a developmental and dynamic perspective on fibroblasts.


Assuntos
Artrite Reumatoide , Doenças Inflamatórias Intestinais , Humanos , Solo , Inflamação , Doenças Inflamatórias Intestinais/patologia , Fibroblastos
7.
New Phytol ; 242(1): 192-210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332398

RESUMO

Eukaryotes have evolved sophisticated post-translational modifications to regulate protein function and numerous biological processes, including ubiquitination controlled by the coordinated action of ubiquitin-conjugating enzymes and deubiquitinating enzymes (Dubs). However, the function of deubiquitination in pathogenic fungi is largely unknown. Here, the distribution of Dubs in the fungal kingdom was surveyed and their functions were systematically characterized using the phytopathogen Fusarium graminearum as the model species, which causes devastating diseases of all cereal species world-wide. Our findings demonstrate that Dubs are critical for fungal development and virulence, especially the ubiquitin-specific protease 15 (Ubp15). Global ubiquitome analysis and subsequent experiments identified three important substrates of Ubp15, including the autophagy-related protein Atg8, the mitogen-activated protein kinase Gpmk1, and the mycotoxin deoxynivalenol (DON) biosynthetic protein Tri4. Ubp15 regulates the deubiquitination of the Atg8, thereby impacting its subcellular localization and the autophagy process. Moreover, Ubp15 also modulates the deubiquitination of Gpmk1 and Tri4. This modulation subsequently influences their protein stabilities and further affects the formation of penetration structures and the biosynthetic process of DON, respectively. Collectively, our findings reveal a previously unknown regulatory pathway of a deubiquitinating enzyme for fungal virulence and highlight the potential of Ubp15 as a target for combating fungal diseases.


Assuntos
Fusarium , Micotoxinas , Virulência , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Enzimas Desubiquitinantes/metabolismo , Doenças das Plantas/microbiologia
8.
Plant Cell Environ ; 47(4): 1041-1052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997205

RESUMO

In arbuscular mycorrhizal (AM) symbiosis, sugars in root cortical cells could be exported as glucose or sucrose into peri-arbuscular space for use by AM fungi. However, no sugar transporter has been identified to be involved in sucrose export. An AM-inducible SWEET transporter, GmSWEET6, was functionally characterised in soybean, and its role in AM symbiosis was investigated via transgenic plants. The expression of GmSWEET6 was enhanced by inoculation with the cooperative fungal strain in both leaves and roots. Heterologous expression in a yeast mutant showed that GmSWEET6 mainly transported sucrose. Transgenic plants overexpressing GmSWEET6 increased sucrose concentration in root exudates. Overexpression or knockdown of GmSWEET6 decreased plant dry weight, P content, and sugar concentrations in non-mycorrhizal plants, which were partly recovered in mycorrhizal plants. Intriguingly, overexpression of GmSWEET6 increased root P content and decreased the percentage of degraded arbuscules, while knockdown of GmSWEET6 increased root sugar concentrations in RNAi2 plants and the percentage of degraded arbuscules in RNAi1 plants compared with wild-type plants when inoculated with AM fungi. These results in combination with subcellular localisation of GmSWEET6 to peri-arbuscular membranes strongly suggest that GmSWEET6 is required for AM symbiosis by mediating sucrose efflux towards fungi.


Assuntos
Micorrizas , Simbiose , Glycine max , Micorrizas/metabolismo , Fungos , Plantas Geneticamente Modificadas/metabolismo , Glucose/metabolismo , Sacarose/metabolismo , Raízes de Plantas/metabolismo
9.
Blood ; 140(16): 1774-1789, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35714307

RESUMO

Individuals with age-related clonal hematopoiesis (CH) are at greater risk for hematologic malignancies and cardiovascular diseases. However, predictive preclinical animal models to recapitulate the spectrum of human CH are lacking. Through error-corrected sequencing of 56 human CH/myeloid malignancy genes, we identified natural CH driver mutations in aged rhesus macaques matching genes somatically mutated in human CH, with DNMT3A mutations being the most frequent. A CH model in young adult macaques was generated via autologous transplantation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene-edited hematopoietic stem and progenitor cells (HSPCs), targeting the top human CH genes with loss-of-function (LOF) mutations. Long-term follow-up revealed reproducible and significant expansion of multiple HSPC clones with heterozygous TET2 LOF mutations, compared with minimal expansion of clones bearing other mutations. Although the blood counts of these CH macaques were normal, their bone marrows were hypercellular and myeloid-predominant. TET2-disrupted myeloid colony-forming units isolated from these animals showed a distinct hyperinflammatory gene expression profile compared with wild type. In addition, mature macrophages purified from the CH macaques showed elevated NLRP3 inflammasome activity and increased interleukin-1ß (IL-1ß) and IL-6 production. The model was used to test the impact of IL-6 blockage by tocilizumab, documenting a slowing of TET2-mutated expansion, suggesting that interruption of the IL-6 axis may remove the selective advantage of mutant HSPCs. These findings provide a model for examining the pathophysiology of CH and give insights into potential therapeutic interventions.


Assuntos
Hematopoiese Clonal , Dioxigenases , Humanos , Adulto Jovem , Animais , Idoso , Hematopoiese Clonal/genética , Hematopoese/genética , Interleucina-1beta/genética , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Macaca mulatta , Proteína 9 Associada à CRISPR , Interleucina-6/genética , Células Clonais , Proteínas de Ligação a DNA/genética , Dioxigenases/genética
10.
Langmuir ; 40(6): 3241-3247, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289291

RESUMO

The accurate determination of hydrogen peroxide (H2O2), an important clinical disease relevant biomarker, is of great importance for the diagnosis and management of illnesses. By using the cathodic monitoring approach, H2O2 can be accurately detected because interfering signals from easily oxidizable endogenous and exogenous species in biofluids can be avoided. However, the simultaneous occurrence of the oxygen reduction reaction (ORR) restricts the practical use of this cathodic method. In this study, via oxygen vacancy modulation, we synthesized FeOx catalysts that can selectively reduce H2O2 over O2. The H2O2 detection system based on this catalyst exhibits an outstanding ORR inhibition ability. Furthermore, by integrating this catalyst with glucose oxidase, a model enzyme, a reliable bioassay system was developed that can selectively detect glucose over a wide variety of interferents in artificially simulated tissue fluids. The bioassay system employing this catalyst in conjunction with oxidases is generally applicable to accurate detect a wide range of biomarkers.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Oxirredução , Glucose , Bioensaio
11.
EMBO Rep ; 23(6): e53791, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35578812

RESUMO

Interleukin-38 (IL-38) is strongly associated with chronic inflammatory diseases; however, its role in tumorigenesis is poorly understood. We demonstrated that expression of IL-38, which exhibits high expression in the skin, is downregulated in human cutaneous squamous cell carcinoma and 7,12-dimethylbenzanthracene/12-O-tetradecanoyl phorbol-13-acetate-induced mouse skin tumorigenesis. IL-38 keratinocyte-specific knockout mice displayed suppressed skin tumor formation and malignant progression. Keratinocyte-specific deletion of IL-38 was associated with reduced expression of inflammatory cytokines, leading to reduced myeloid cell infiltration into the local tumor microenvironment. IL-38 is dispensable for epidermal mutagenesis, but IL-38 keratinocyte-specific deletion reduces proliferative gene expression along with epidermal cell proliferation and hyperplasia. Mechanistically, we first demonstrated that IL-38 activates the c-Jun N-terminal kinase (JNK)/activator protein 1 signal transduction pathway to promote the expression of cancer-related inflammatory cytokines and proliferation and migration of tumor cells in an IL-1 receptor-related protein 2 (IL-1Rrp2)-dependent manner. Our findings highlight the role of IL-38 in the regulation of epidermal cell hyperplasia and pro-tumorigenic microenvironment through IL-1Rrp2/JNK and suggest IL-38/IL-1Rrp2 as a preventive and potential therapeutic target in skin cancer.


Assuntos
Carcinoma de Células Escamosas , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Neoplasias Cutâneas , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Citocinas , Hiperplasia/patologia , Interleucinas/genética , Camundongos , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Microambiente Tumoral
12.
Nanotechnology ; 35(36)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38834038

RESUMO

Give the emergence of drug resistance in bacteria resulting from antibiotic misuse, there is an urgent need for research and application of novel antibacterial approaches. In recent years, nanoparticles (NPs) have garnered significant attention due to their potential to disrupt bacteria cellular structure through loading drugs and special mechanisms, thus rendering them inactive. In this study, the surface of hollow polydopamine (HPDA) NPs was utilized for the growth of Prussian blue (PB), resulting in the formation of HPDA-PB NPs. Incorporation of Co element during the preparation process led to partial doping of PB with Co2+ions. The performance test results demonstrated that the HPDA-PB NPs exhibited superior photothermal conversion efficiency and peroxidase-like activity compared to PB NPs. HPDA-PB NPs have the ability to catalyze the formation of hydroxyl radicals from H2O2in a weakly acidic environment. Due to the tiny PB particles on the surface and the presence of Co2+doping, they have strong broad-spectrum antibacterial properties. Bothin vitroandin vivoevaluations confirm their efficacy against various bacterial strains, particularlyStaphylococcus aureus, and their potential to promote wound healing, making them a promising candidate for advanced wound care and antimicrobial applications.


Assuntos
Antibacterianos , Cobalto , Ferrocianetos , Indóis , Polímeros , Staphylococcus aureus , Indóis/química , Indóis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Polímeros/farmacologia , Ferrocianetos/química , Ferrocianetos/farmacologia , Cobalto/química , Cobalto/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Nanopartículas/química , Testes de Sensibilidade Microbiana , Camundongos , Cicatrização/efeitos dos fármacos
13.
J Immunol ; 209(7): 1286-1299, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36038291

RESUMO

Type I conventional dendritic cells (cDC1s) are an essential Ag-presenting population required for generating adaptive immunity against intracellular pathogens and tumors. While the transcriptional control of cDC1 development is well understood, the mechanisms by which extracellular stimuli regulate cDC1 function remain unclear. We previously demonstrated that the cytokine-responsive transcriptional regulator STAT3 inhibits polyinosinic:polycytidylic acid [poly(I:C)]-induced cDC1 maturation and cDC1-mediated antitumor immunity in murine breast cancer, indicating an intrinsic, suppressive role for STAT3 in cDC1s. To probe transcriptional mechanisms regulating cDC1 function, we generated novel RNA sequencing datasets representing poly(I:C)-, IL-10-, and STAT3-mediated gene expression responses in murine cDC1s. Bioinformatics analyses indicated that poly(I:C) stimulates multiple inflammatory pathways independent of STAT3, while IL-10-activated STAT3 uniquely inhibits the poly(I:C)-induced type I IFN (IFN-I) transcriptional response. We validated this mechanism using purified cDC1s deficient for STAT3 or IFN signaling. Our data reveal IL-10-activated STAT3 suppresses production of IFN-ß and IFN-γ, accrual of tyrosine phosphorylated STAT1, and IFN-stimulated gene expression in cDC1s after poly(I:C) exposure. Moreover, we found that maturation of cDC1s in response to poly(I:C) is dependent on the IFN-I receptor, but not the type II IFN receptor, or IFN-λ. Taken together, we elucidate an essential role for STAT3 in restraining autocrine IFN-I signaling in cDC1s elicited by poly(I:C) stimulation, and we provide novel RNA sequencing datasets that will aid in further delineating inflammatory and anti-inflammatory mechanisms in cDC1s.


Assuntos
Interleucina-10 , Fator de Transcrição STAT3 , Animais , Citocinas/metabolismo , Células Dendríticas , Interleucina-10/metabolismo , Camundongos , Poli I-C/farmacologia , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo
14.
Brain ; 146(4): 1299-1315, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36572966

RESUMO

Accumulation of neurotoxic protein aggregates is the pathological hallmark of neurodegenerative disease. Proper clearance of these waste metabolites is an essential process for maintaining brain microenvironment homeostasis and may delay or even halt the onset and progression of neurodegeneration. Vascular endothelial cells regulate the molecular exchange between the circulation and brain parenchyma, thereby protecting the brain against the entry of xenobiotics and decreasing the accumulation of neurotoxic proteins. In this review, we provide an overview of cerebrovascular endothelial cell characteristics and their impact on waste metabolite clearance. Lastly, we speculate that molecular changes in cerebrovascular endothelial cells are the drivers of neurodegenerative diseases.


Assuntos
Células Endoteliais , Doenças Neurodegenerativas , Humanos , Células Endoteliais/metabolismo , Doenças Neurodegenerativas/patologia , Encéfalo/patologia , Homeostase
16.
Appl Microbiol Biotechnol ; 108(1): 313, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683244

RESUMO

To avoid the unreasonable use of chemical fertilizer, an environmentally friendly means of improving soil fertility is required. This study explored the role of the plant growth-promoting rhizosphere bacteria (PGPR) strain Bacillus velezensis SAAS-63 in improving nutrient stress in lettuce. Compared with no inoculation, B. velezensis SAAS-63 inoculants exhibited significantly increased fresh weight, root length, and shoot height under nutrient deficiency, as well as improved antioxidant activities and proline contents. The exogenous addition of B. velezensis SAAS-63 also significantly increased the accumulation of macroelements and micronutrients in lettuce. To elucidate the resistance mechanisms induced by B. velezensis SAAS-63 under nutrient stress, high-throughput sequencing and multi-omics analysis were performed. Inoculation with B. velezensis SAAS-63 altered the microbial community of the rhizosphere and increased the relative abundances of Streptomyces, Actinoallomurus, Verrucomicrobia, and Chloroflexi. It is worth noting that the inoculant SAAS-63 can affect plant rhizosphere metabolism. The inoculant changed the metabolic flow of phenylpropanoid metabolic pathway under nutrient deficiency and promoted phenylalanine to participate more in the synthesis of lignin precursors and coumarin substances by inhibiting the synthesis of flavone and isoflavone, thus improving plant resistance. This study showed that the addition of inoculant SAAS-63 could help plants recruit microorganisms to decompose and utilize trehalose and re-established the carbon metabolism of the plant rhizosphere. Additionally, microbes were found to be closely related to the accumulation of metabolites based on correlation analysis. The results indicated that the addition of PGPRs has an important role in regulating soil rhizosphere microbes and metabolism, providing valuable information for understanding how PGPRs affect complex biological processes and enhance plant adaptation to nutrient deficiency. KEY POINTS: • Inoculation with SAAS-63 significantly promoted plant growth under nutrient-deficient conditions • Inoculation with SAAS-63 affected rhizosphere microbial diversity and community structure • Inoculation with SAAS-63 affected plant rhizosphere metabolism and induced plants to synthesize substances that resist stress.


Assuntos
Bacillus , Lactuca , Nutrientes , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Bacillus/metabolismo , Bacillus/genética , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Raízes de Plantas/microbiologia , Microbiota , Multiômica
17.
J Biopharm Stat ; : 1-14, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335371

RESUMO

Combination therapies with multiple mechanisms of action can offer improved efficacy and/or safety profiles when compared to a single therapy with one mechanism of action. Consequently, the number of combination therapy studies have increased multi-fold, both in oncology and non-oncology indications. However, identifying the optimal doses of each drug in a combination therapy can require a large sample size and prolong study timelines, especially when full factorial designs are used. In this paper, we extend the MCP-Mod design of Bretz, Pinheiro, and Branson to a three-dimensional space to model the dose-response surface of a two-drug combination under the framework of Combination (Comb) MCP-Mod. The resulting model yields a set of dosages for each drug in the combination that elicits the target response so that an optimal dose for the combination can be selected for pivotal studies. We construct three-dimensional dose-response models for the combination and formulate the contrast test statistic to select the best model, which can then be used to select the optimal dose. Guidance to calculate power and sample size calculations are provided to assist study design. Simulation studies show that Comb MCP-Mod performs as well as the conventional multiple comparisons approach in controlling the family-wise error rate at the desired alpha level. However, Comb MCP-Mod is more powerful than the classical multiple comparisons approach in detecting dose-response relationships when treatment is non-null. The probability of correctly identifying the underlying dose-response relationship is generally higher when using Comb MCP-Mod than when using the multiple comparisons approach.

18.
BMC Ophthalmol ; 24(1): 28, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247010

RESUMO

BACKGROUND: The management of post-refractive surgery dry eye disease (DED) can be challenging in clinical practice, and patients usually show an incomplete response to traditional artificial tears, especially when it is complicated with ocular pain. Therefore, we aim to investigate the efficacy of combined topical 0.05% cyclosporine A and 0.1% sodium hyaluronate treatment in post-refractive surgery DED patients with ocular pain unresponsive to traditional artificial tears. METHODS: We enrolled 30 patients with post-refractive surgery DED with ocular pain who were unresponsive to traditional artificial tears. Topical 0.05% cyclosporine A and 0.1% sodium hyaluronate were used for 3 months. They were evaluated at baseline and 1 and 3 months for dry eye and ocular pain symptoms and objective parameters, including Numerical Rating Scale (NRS), Neuropathic Pain Symptom Inventory modified for the Eye (NPSI-Eye), tear break-up time (TBUT), Schirmer I test (SIt), corneal fluorescein staining (CFS), corneal sensitivity, and corneal nerve morphology. In addition, tear levels of inflammatory cytokines and neuropeptides were measured using the Luminex assay. RESULTS: After 3 months of treatment, patients showed a statistically significant improvement in the ocular surface disease index (OSDI), TBUT, SIt, CFS, and corneal sensitivity (all P < 0.01) using linear mixed models. As for ocular pain parameters, the NRS and NPSI-Eye scores were significantly reduced (both P < 0.05) and positively correlated with the OSDI and CFS scores. Additionally, tear IL-1ß, IL-6, and TNF-α levels were improved better than pre-treatment (P = 0.01, 0.03, 0.02, respectively). CONCLUSION: In patients with post-refractive surgery DED with ocular pain, combined topical 0.05% cyclosporine A and 0.1% sodium hyaluronate treatment improved tear film stability, dry eye discomfort, and ocular pain, effectively controlling ocular inflammation. TRIAL REGISTRATION: Registration number: NCT06043908.


Assuntos
Lacerações , Procedimentos Cirúrgicos Refrativos , Humanos , Ácido Hialurônico , Ciclosporina , Lubrificantes Oftálmicos , Dor Ocular/tratamento farmacológico , Dor Ocular/etiologia , Dor , Córnea
19.
Ecotoxicol Environ Saf ; 278: 116424, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723382

RESUMO

BACKGROUND: Epidemiological studies have reported associations between heavy metals and renal function. However, longitudinal studies are required to further validate these associations and explore the interactive effects of heavy metals on renal function and their directional influence. METHOD: This study, conducted in Northeast China from 2016 to 2021, included a four-time repeated measures design involving 384 participants (1536 observations). Urinary concentrations of chromium (Cr), cadmium (Cd), manganese (Mn), and lead (Pb) were measured, along with renal biomarkers including urinary microalbumin (umAlb), urinary albumin-to-creatinine ratio (UACR), N-acetyl-ß-D-glucosaminidase (NAG), and ß2-microglobulin (ß2-MG) levels. Estimated glomerular filtration rate (eGFR) was calculated. A Linear Mixed Effects Model (LME) examined the association between individual metal exposure and renal biomarkers. Subsequently, Quantile g-computation and Bayesian Kernel Machine Regression (BKMR) models assessed the overall effects of heavy metal mixtures. Marginal Effect models examined the directional impact of metal interactions in the BKMR on renal function. RESULT: Results indicate significant impacts of individual and combined exposures of Cr, Cd, Pb, and Mn on renal biomarkers. Metal interactions in the BKMR model were observed, with synergistic effects of Cd-Cr on NAG, umAlb, UACR; Cd-Pb on NAG, UACR; Pb-Cr on umAlb, UACR, eGFR-MDRD, eGFR-EPI; and an antagonistic effect of Mn-Pb-Cr on UACR. CONCLUSION: Both individual and combined exposures to heavy metals are associated with renal biomarkers, with significant synergistic interactions leading to renal damage. Our findings elucidate potential interactions among these metals, offering valuable insights into the mechanisms linking multiple metal exposures to renal injury.


Assuntos
Biomarcadores , Metais Pesados , Metais Pesados/toxicidade , Metais Pesados/urina , Humanos , China/epidemiologia , Masculino , Biomarcadores/urina , Feminino , Estudos Longitudinais , Pessoa de Meia-Idade , Adulto , Poluentes Ambientais/toxicidade , Taxa de Filtração Glomerular/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Rim/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/urina , Acetilglucosaminidase/urina , Microglobulina beta-2/urina , Monitoramento Ambiental
20.
Ecotoxicol Environ Saf ; 274: 116178, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461577

RESUMO

BACKGROUND: The impact of heavy metals on liver function has been examined in numerous epidemiological studies. However, these findings lack consistency and longitudinal validation. METHODS: In this study, we conducted three follow-up surveys with 426 participants from Northeast China. Blood and urine samples were collected, along with questionnaire information. Urine samples were analyzed for concentrations of four metals (chromium [Cr], cadmium [Cd], lead [Pb], and manganese [Mn]), while blood samples were used to measure five liver function indicators (alanine aminotransferase [ALT], aspartate aminotransferase [AST], albumin [ALB], globulin [GLB], and total protein [TP]). We utilized a linear mixed-effects model (LME) to explore the association between individual heavy metal exposure and liver function. Joint effects of metal mixtures were investigated using quantile g-computation and Bayesian kernel machine regression (BKMR). Furthermore, we employed BKMR and Marginal Effect models to examine the interaction effects between metals on liver function. RESULTS: The LME results demonstrated a significant association between urinary heavy metals (Cr, Cd, Pb, and Mn) and liver function markers. BKMR results indicated positive associations between heavy metal mixtures and ALT, AST, and GLB, and negative associations with ALB and TP, which were consistent with the g-comp results. Synergistic effects were observed between Cd-Cr on ALT, Mn-Cr and Cr-Pb on ALB, while an antagonistic effect was found between Mn-Pb and Mn-Cd on ALB. Additionally, synergistic effects were observed between Mn-Cr on GLB and Cd-Cr on TP. Furthermore, a three-way antagonistic effect of Mn-Pb-Cr on ALB was identified. CONCLUSION: Exposure to heavy metals (Cr, Cd, Mn, Pb) is associated with liver function markers, potentially leading to liver damage. Moreover, there are joint and interaction effects among these metals, which warrant further investigation at both the population and mechanistic levels.


Assuntos
Cádmio , Metais Pesados , Humanos , Cádmio/toxicidade , Teorema de Bayes , Chumbo/farmacologia , Metais Pesados/farmacologia , Manganês/toxicidade , Cromo/farmacologia , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA