Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 322(6): E517-E527, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403438

RESUMO

Insulin resistance is a major public health burden that often results in other comorbidities including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and cardiovascular disease. An insulin sensitizer has the potential to become a disease-modifying therapy. It remains an unmet medical need to identify therapeutics that target the insulin signaling pathway to treat insulin resistance. Low-molecular-weight protein tyrosine phosphatase (LMPTP) negatively regulates insulin signaling and has emerged as a potential therapeutic target for insulin sensitization. Genetic studies have demonstrated that LMPTP is positively associated with obesity in humans and promotes insulin resistance in rodents. A recent study showed that pharmacological inhibition or genetic deletion of LMPTP protects mice from high-fat diet-induced insulin resistance and diabetes. Here, we show that loss of LMPTP by genetic deletion has no significant effects on improving glucose tolerance in lean or diet-induced obese mice. Furthermore, our data demonstrate that LMPTP deficiency potentiates cardiac hypertrophy that leads to mild cardiac dysfunction. Our findings suggest that the development of LMPTP inhibitors for the treatment of insulin resistance and type 2 diabetes should be reevaluated, and further studies are needed to characterize the molecular and pathophysiological role of LMPTP.NEW & NOTEWORTHY Inhibition of LMPTP with a small-molecule inhibitor, Cmpd23, improves glucose tolerance in mice as reported earlier. However, genetic deficiency of the LMPTP-encoding gene, Acp1, has limited effects on glucose metabolism but leads to mild cardiac hypertrophy in mice. The findings suggest the potential off-target effects of Cmpd23 and call for reevaluation of LMPTP as a therapeutic target for the treatment of insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/uso terapêutico , Magreza
2.
J Biol Chem ; 291(33): 17394-404, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27325692

RESUMO

Endoplasmic reticulum (ER) stress has been shown to contribute to various metabolic diseases, including non-alcoholic fatty liver disease and type 2 diabetes. Reduction of ER stress by treatment with chemical chaperones or overexpression of ER chaperone proteins alleviates hepatic steatosis. Nonetheless, X-box binding protein 1s (XBP1s), a key transcription factor that reduces ER stress, has been proposed as a lipogenic transcription factor. In this report, we document that XBP1s leads to suppression of lipogenic gene expression and reduction of hepatic triglyceride and diacylglycerol content in livers of diet-induced obese and genetically obese and insulin-resistant ob/ob mice. Furthermore, we also show that PKCϵ activity, which correlates with fatty liver and which causes insulin resistance, was significantly reduced in diet-induced obese mice. Finally, we have shown that XBP1s reduces the hepatic fatty acid synthesis rate and enhances macrolipophagy, an initiating step in lipolysis. Our results reveal that XBP1s reduces hepatic lipogenic gene expression and improves hepatosteatosis in mouse models of obesity and insulin resistance, which leads us to conclude that XBP1s has anti-lipogenic properties in the liver.


Assuntos
Estresse do Retículo Endoplasmático , Ácidos Graxos/biossíntese , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Resistência à Insulina , Lipogênese , Obesidade/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Graxos/genética , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/patologia , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Proteína 1 de Ligação a X-Box/genética
3.
J Pharmacokinet Pharmacodyn ; 43(4): 411-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27405817

RESUMO

PF-05231023, a long-acting FGF21 analogue, is a promising potential pharmacotherapy for the treatment of obesity and associated comorbidities. Previous studies have shown the potential of FGF21 and FGF21-like compounds to decrease body weight in mice, non-human primates, and humans; the precise mechanisms of action remain unclear. In particular, there have been conflicting reports on the degree to which FGF21-induced weight loss in non-human primates is attributable to a decrease in food intake versus an increase in energy expenditure. Here, we present a semi-mechanistic mathematical model of energy balance and body composition developed from similar work in mice. This model links PF-05231023 administration and washout to changes in food intake, which in turn drives changes in body weight. The model is calibrated to and compared with recently published data from cynomolgus macaques treated with PF-05231023, demonstrating its accuracy in describing pharmacotherapy-induced weight loss in these animals. The results are consistent with the hypothesis that PF-05231023 decreases body weight in cynomolgus macaques solely by a reduction in food intake, with no direct effect on energy expenditure.


Assuntos
Fármacos Antiobesidade/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Modelos Biológicos , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/farmacocinética , Fatores de Crescimento de Fibroblastos/uso terapêutico , Injeções Intravenosas , Macaca fascicularis , Masculino , Obesidade/metabolismo
4.
Am J Physiol Endocrinol Metab ; 306(10): E1176-87, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24714397

RESUMO

Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first step in the synthesis of glycerolipids and glycerophospholipids. Microsomal GPAT, the major GPAT activity, is encoded by at least two closely related genes, GPAT3 and GPAT4. To investigate the in vivo functions of GPAT3, we generated Gpat3-deficient (Gpat3(-/-)) mice. Total GPAT activity in white adipose tissue of Gpat3(-/-) mice was reduced by 80%, suggesting that GPAT3 is the predominant GPAT in this tissue. In liver, GPAT3 deletion had no impact on total GPAT activity but resulted in a 30% reduction in N-ethylmaleimide-sensitive GPAT activity. The Gpat3(-/-) mice were viable and fertile and exhibited no obvious metabolic abnormalities on standard laboratory chow. However, when fed a high-fat diet, female Gpat3(-/-) mice showed decreased body weight gain and adiposity and increased energy expenditure. Increased energy expenditure was also observed in male Gpat3(-/-) mice, although it was not accompanied by a significant change in body weight. GPAT3 deficiency lowered fed, but not fasted, glucose levels and tended to improve glucose tolerance in diet-induced obese male and female mice. On a high-fat diet, Gpat3(-/-) mice had enlarged livers and displayed a dysregulation in cholesterol metabolism. These data establish GPAT3 as the primary GPAT in white adipose tissue and reveal an important role of the enzyme in regulating energy, glucose, and lipid homeostasis.


Assuntos
Tecido Adiposo Branco/enzimologia , Colesterol/metabolismo , Metabolismo Energético/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Obesidade/enzimologia , Animais , Dieta/efeitos adversos , Feminino , Glicerol-3-Fosfato O-Aciltransferase/genética , Homeostase/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética
5.
Biochem Biophys Res Commun ; 443(2): 689-93, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333417

RESUMO

Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.


Assuntos
Glicemia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Serina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína 1 do Complexo Esclerose Tuberosa
6.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895340

RESUMO

Imbalances in lipid storage and secretion lead to the accumulation of hepatocyte lipid droplets (LDs) (i.e., hepatic steatosis). Our understanding of the mechanisms that govern the channeling of hepatocyte neutral lipids towards cytosolic LDs or secreted lipoproteins remains incomplete. Here, we performed a series of CRISPR-Cas9 screens under different metabolic states to uncover mechanisms of hepatic neutral lipid flux. Clustering of chemical-genetic interactions identified CLIC-like chloride channel 1 (CLCC1) as a critical regulator of neutral lipid storage and secretion. Loss of CLCC1 resulted in the buildup of large LDs in hepatoma cells and knockout in mice caused liver steatosis. Remarkably, the LDs are in the lumen of the ER and exhibit properties of lipoproteins, indicating a profound shift in neutral lipid flux. Finally, remote homology searches identified a domain in CLCC1 that is homologous to yeast Brl1p and Brr6p, factors that promote the fusion of the inner and outer nuclear envelopes during nuclear pore complex assembly. Loss of CLCC1 lead to extensive nuclear membrane herniations, consistent with impaired nuclear pore complex assembly. Thus, we identify CLCC1 as the human Brl1p/Brr6p homolog and propose that CLCC1-mediated membrane remodeling promotes hepatic neutral lipid flux and nuclear pore complex assembly.

7.
Proc Natl Acad Sci U S A ; 107(45): 19320-5, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974941

RESUMO

Increased endoplasmic reticulum (ER) stress is one of the central mechanisms that lead to dysregulated metabolic homeostasis in obesity. It is thus crucial to understand the underpinnings of the mechanisms that lead to the development of ER stress. A high level of ER Ca(2+) is imperative for maintenance of normal ER function and this high Ca(2+) concentration of ER is maintained by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Here, we show that SERCA2b protein and mRNA levels are dramatically reduced in the liver of obese mice and restoration of SERCA2b in the liver of obese and diabetic mice alleviates ER stress, increases glucose tolerance, and significantly reduces the blood glucose levels. Furthermore, overexpression of SERCA2b in the liver of obese mice significantly reduces the lipogenic gene expression and the triglyceride content in the liver. Our results document the importance of SERCA2b in dysregulated glucose and lipid homeostasis in the liver of obese mice and suggest development of drugs to increase SERCA2b activity for treatment of type 2 diabetes and nonalcoholic steatohepatitis.


Assuntos
Glicemia/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Obesidade/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Estresse Fisiológico , Animais , Diabetes Mellitus/metabolismo , Fígado Gorduroso , Intolerância à Glucose , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos
8.
Neural Netw ; 158: 132-141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455428

RESUMO

We study the robust stabilization problem of a class of nonlinear systems with asymmetric saturating actuators and mismatched disturbances. Initially, we convert such a robust stabilization problem into a nonlinear-constrained optimal control problem by constructing a discounted cost function for the auxiliary system. Then, for the purpose of solving the nonlinear-constrained optimal control problem, we develop a simultaneous policy iteration (PI) in the reinforcement learning framework. The implementation of the simultaneous PI relies on an actor-critic architecture, which employs actor and critic neural networks (NNs) to separately approximate the control policy and the value function. To determine the actor and critic NNs' weights, we use the approach of weighted residuals together with the typical Monte-Carlo integration technique. Finally, we perform simulations of two nonlinear plants to validate the established theoretical claims.


Assuntos
Redes Neurais de Computação , Dinâmica não Linear , Retroalimentação , Aprendizagem , Algoritmos
9.
J Biol Chem ; 286(44): 38128-38135, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21908604

RESUMO

Obesity is associated with hepatic steatosis, partially due to increased lipogenesis and decreased fatty acid ß-oxidation in the liver; however, the underlying mechanism of abnormal lipid metabolism is not fully understood. We reported previously that obesity is associated with LCN13 (lipocalin 13) deficiency. LCN13 is a lipocalin family member involved in glucose metabolism, and LCN13 deficiency appears to contribute to hyperglycemia in obese mice. Here, we show that LCN13 is also an important regulator of lipogenesis and ß-oxidation in the liver. In primary hepatocytes, recombinant LCN13 directly suppressed lipogenesis and increased fatty acid ß-oxidation, whereas neutralization of endogenous LCN13 had an opposite effect. Transgenic overexpression of LCN13 protected against hepatic steatosis in mice with either dietary or genetic (ob/ob) obesity. LCN13 transgenic overexpression also improved hyperglycemia, glucose intolerance, and insulin resistance in ob/ob mice. Short-term LCN13 overexpression via an adenovirus-mediated gene transfer similarly attenuated hepatic steatosis in db/db mice. LCN13 inhibited the expression of important lipogenic genes and stimulated the genes that promote ß-oxidation. These results suggest that LCN13 decreases liver lipid levels by both inhibiting hepatic lipogenesis and stimulating ß-oxidation. LCN13 deficiency is likely to contribute to fatty liver disease in obese mice.


Assuntos
Ácidos Graxos/química , Fígado Gorduroso/metabolismo , Lipocalinas/metabolismo , Animais , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Resistência à Insulina , Lipídeos/química , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Proteínas Recombinantes/química , Transgenes
10.
J Biol Chem ; 286(48): 41838-41851, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21990351

RESUMO

Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in triglyceride synthesis. Findings from genetically modified mice as well as pharmacological studies suggest that inhibition of DGAT1 is a promising strategy for the treatment of obesity and type 2 diabetes. Here we characterize a tool DGAT1 inhibitor compound, T863. We found that T863 is a potent inhibitor for both human and mouse DGAT1 in vitro, which acts on the acyl-CoA binding site of DGAT1 and inhibits DGAT1-mediated triacylglycerol formation in cells. In an acute lipid challenge model, oral administration of T863 significantly delayed fat absorption and resulted in lipid accumulation in the distal small intestine of mice, mimicking the effects of genetic ablation of DGAT1. In diet-induced obese mice, oral administration of T863 for 2 weeks caused weight loss, reduction in serum and liver triglycerides, and improved insulin sensitivity. In addition to the expected triglyceride-lowering activity, T863 also lowered serum cholesterol. Hepatic IRS2 protein was dramatically up-regulated in mice treated with T863, possibly contributing to improved insulin sensitivity. In differentiated 3T3-L1 adipocytes, T863 enhanced insulin-stimulated glucose uptake, suggesting a possible role for adipocytes to improve insulin sensitivity upon DGAT1 inhibition. These results reveal novel mechanistic insights into the insulin-sensitizing effects of DGAT1 inhibition in mouse models. Taken together, our study provides a comprehensive evaluation of a small molecule inhibitor for DGAT1 and suggests that pharmacological inhibition of DGAT1 holds promise in treating diverse metabolic disorders.


Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Resistência à Insulina , Fígado/enzimologia , Redução de Peso/efeitos dos fármacos , Células 3T3-L1 , Administração Oral , Animais , Sítios de Ligação , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Humanos , Camundongos , Camundongos Obesos , Triglicerídeos/sangue
11.
SLAS Discov ; 27(1): 20-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058172

RESUMO

Screening campaigns, especially those aimed at modulating enzyme activity, often rely on measuring substrate→product conversions. Unfortunately, the presence of endogenous substrates and/or products can limit one's ability to measure conversions. As well, coupled detection systems, often used to facilitate optical readouts, are subject to interference. Stable isotope labeled substrates can overcome background contamination and yield a direct readout of enzyme activity. Not only can isotope kinetic assays enable early screening, but they can also be used to follow hit progression in translational (pre)clinical studies. Herein, we consider a case study surrounding lipid biology to exemplify how metabolic flux analyses can connect stages of drug development, caveats are highlighted to ensure reliable data interpretations. For example, when measuring enzyme activity in early biochemical screening it may be enough to quantify the formation of a labeled product. In contrast, cell-based and in vivo studies must account for variable exposure to a labeled substrate (or precursor) which occurs via tracer dilution and/or isotopic exchange. Strategies are discussed to correct for these complications. We believe that measures of metabolic flux can help connect structure-activity relationships with pharmacodynamic mechanisms of action and determine whether mechanistically differentiated biophysical interactions lead to physiologically relevant outcomes. Adoption of this logic may allow research programs to (i) build a critical bridge between primary screening and (pre)clinical development, (ii) elucidate biology in parallel with screening and (iii) suggest a strategy aimed at in vivo biomarker development.


Assuntos
Isótopos , Marcação por Isótopo
12.
J Clin Invest ; 117(2): 397-406, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17235396

RESUMO

SH2B1 (previously named SH2-B), a cytoplasmic adaptor protein, binds via its Src homology 2 (SH2) domain to a variety of protein tyrosine kinases, including JAK2 and the insulin receptor. SH2B1-deficient mice are obese and diabetic. Here we demonstrated that multiple isoforms of SH2B1 (alpha, beta, gamma, and/or delta) were expressed in numerous tissues, including the brain, hypothalamus, liver, muscle, adipose tissue, heart, and pancreas. Rat SH2B1beta was specifically expressed in neural tissue in SH2B1-transgenic (SH2B1(Tg)) mice. SH2B1(Tg) mice were crossed with SH2B1-knockout (SH2B1(KO)) mice to generate SH2B1(TgKO) mice expressing SH2B1 only in neural tissue but not in other tissues. Systemic deletion of the SH2B1 gene resulted in metabolic disorders in SH2B1(KO) mice, including hyperlipidemia, leptin resistance, hyperphagia, obesity, hyperglycemia, insulin resistance, and glucose intolerance. Neuron-specific restoration of SH2B1beta not only corrected the metabolic disorders in SH2B1(TgKO) mice, but also improved JAK2-mediated leptin signaling and leptin regulation of orexigenic neuropeptide expression in the hypothalamus. Moreover, neuron-specific overexpression of SH2B1 dose-dependently protected against high-fat diet-induced leptin resistance and obesity. These observations suggest that neuronal SH2B1 regulates energy balance, body weight, peripheral insulin sensitivity, and glucose homeostasis at least in part by enhancing hypothalamic leptin sensitivity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Glucose/metabolismo , Neurônios/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Tecido Adiposo/metabolismo , Animais , Sequência de Bases , Peso Corporal/fisiologia , Primers do DNA/genética , Homeostase , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina/fisiologia , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo
13.
Sci Rep ; 10(1): 3417, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099031

RESUMO

Insulin resistance increases patients' risk of developing type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH) and a host of other comorbidities including cardiovascular disease and cancer. At the molecular level, insulin exerts its function through the insulin receptor (IR), a transmembrane receptor tyrosine kinase. Data from human genetic studies have shown that Grb14 functions as a negative modulator of IR activity, and the germline Grb14-knockout (KO) mice have improved insulin signaling in liver and skeletal muscle. Here, we show that Grb14 knockdown in liver, white adipose tissues, and heart with an AAV-shRNA (Grb14-shRNA) improves glucose homeostasis in diet-induced obese (DIO) mice. A previous report has shown that germline deletion of Grb14 in mice results in cardiac hypertrophy and impaired systolic function, which could severely limit the therapeutic potential of targeting Grb14. In this report, we demonstrate that there are no significant changes in cardiac function as measured by echocardiography in the Grb14-knockdown mice fed a high-fat diet for a period of four months. While additional studies are needed to further confirm the efficacy and to de-risk potential negative cardiac effects in preclinical models, our data support the therapeutic strategy of inhibiting Grb14 to treat diabetes and related conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Técnicas de Silenciamento de Genes , Insulina/genética , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo
14.
IEEE Trans Cybern ; 49(8): 3088-3098, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29994240

RESUMO

The multilayer perceptrons (MLPs) are widely used in many fields, however, singularities in the parameter space may seriously influence the learning dynamics of MLPs and cause strange learning behaviors. Given that the singularities are the subspaces of the parameter space where the Fisher information matrix (FIM) degenerates, the FIM plays a key role in the study of the singular learning dynamics of the MLPs. In this paper, we obtain the analytical form of the FIM for unipolar activation function-based MLPs where the input subjects to the Gaussian distribution with general covariance matrix and the unipolar error function is chosen as the activation function. Then three simulation experiments are taken to verify the validity of the obtained results.

15.
Mol Endocrinol ; 21(9): 2270-81, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17565041

RESUMO

Leptin controls body weight by activating its long form receptor (LEPRb). LEPRb binds to Janus kinase 2 (JAK2), a cytoplasmic tyrosine kinase that mediates leptin signaling. We previously reported that genetic deletion of SH2B1 (previously known as SH2-B), a JAK2-binding protein, results in severe leptin-resistant and obese phenotypes, indicating that SH2B1 is a key endogenous positive regulator of leptin sensitivity. Here we show that SH2B1 regulates leptin signaling by multiple mechanisms. In the absence of leptin, SH2B1 constitutively bound, via its non-SH2 domain region(s), to non-tyrosyl-phosphorylated JAK2, and inhibited JAK2. Leptin stimulated JAK2 phosphorylation on Tyr(813), which subsequently bound to the SH2 domain of SH2B1. Binding of the SH2 domain of SH2B1 to phospho-Tyr(813) in JAK2 enhanced leptin induction of JAK2 activity. JAK2 was required for leptin-stimulated phosphorylation of insulin receptor substrate 1 (IRS1), an upstream activator of the phosphatidylinositol 3-kinase pathway. Overexpression of SH2B1 enhanced both JAK2- and JAK2(Y813F)-mediated tyrosine phosphorylation of IRS1 in response to leptin, even though SH2B1 did not enhance JAK2(Y813F) activation. Leptin promoted the interaction of SH2B1 with IRS1. These data suggest that constitutive SH2B1-JAK2 interaction, mediated by the non-SH2 domain region(s) of SH2B1 and the non-Tyr(813) region(s) in JAK2, increases the local concentration of SH2B1 close to JAK2 and inhibits JAK2 activity. Leptin-stimulated SH2B1-JAK2 interaction, mediated by the SH2 domain of SH2B1 and phospho-Tyr(813) in JAK2, promotes JAK2 activation, thus globally enhancing leptin signaling. SH2B1-IRS1 interaction facilitates IRS1 phosphorylation by recruiting IRS1 to JAK2 and/or by protecting IRS1 from dephosphorylation, thus specifically enhancing leptin stimulation of the phosphatidylinositol 3-kinase pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Janus Quinase 2/metabolismo , Leptina/fisiologia , Transdução de Sinais/fisiologia , Tirosina/metabolismo , Animais , Linhagem Celular , Humanos , Janus Quinase 2/genética , Camundongos , Fosforilação , Receptores de Superfície Celular/genética , Receptores para Leptina , Tirosina/genética
16.
IEEE Access ; 6: 45617-45624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31011504

RESUMO

The robust distributed finite time consensus of second-order multi-agent systems via pinning control has been investigated in this paper. A new nonsingular finite time TSM control method is proposed for second-order single system with disturbances. Based on the pinning error function vector, robust distributed finite time consensus of second-order multi-agent systems via pinning control method is given. Simulations results are performed to validate the effectiveness of the theoretical results.

17.
Sci Rep ; 8(1): 4241, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523796

RESUMO

Pharmacological administration of FGF21 analogues has shown robust body weight reduction and lipid profile improvement in both dysmetabolic animal models and metabolic disease patients. Here we report the design, optimization, and characterization of a long acting glyco-variant of FGF21. Using a combination of N-glycan engineering for enhanced protease resistance and improved solubility, Fc fusion for further half-life extension, and a single point mutation for improving manufacturability in Chinese Hamster Ovary cells, we created a novel FGF21 analogue, Fc-FGF21[R19V][N171] or PF-06645849, with substantially improved solubility and stability profile that is compatible with subcutaneous (SC) administration. In particular, it showed a low systemic clearance (0.243 mL/hr/kg) and long terminal half-life (~200 hours for intact protein) in cynomolgus monkeys that approaches those of monoclonal antibodies. Furthermore, the superior PK properties translated into robust improvement in glucose tolerance and the effects lasted 14 days post single SC dose in ob/ob mice. PF-06645849 also caused greater body weight loss in DIO mice at lower and less frequent SC doses, compared to previous FGF21 analogue PF-05231023. In summary, the overall PK/PD and pharmaceutical profile of PF-06645849 offers great potential for development as weekly to twice-monthly SC administered therapeutic for chronic treatment of metabolic diseases.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacocinética , Animais , Células CHO , Cricetinae , Cricetulus , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/química , Glicosilação , Células HEK293 , Humanos , Injeções Subcutâneas , Macaca fascicularis , Taxa de Depuração Metabólica , Camundongos , Estabilidade Proteica , Proteólise , Distribuição Tecidual
18.
Cell Metab ; 23(3): 427-40, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26959184

RESUMO

FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess potential direct effects of FGF21 on bone in humans.


Assuntos
Fármacos Antiobesidade/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/farmacologia , Obesidade/tratamento farmacológico , Adolescente , Adulto , Idoso , Animais , Fármacos Antiobesidade/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Glicemia , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Avaliação Pré-Clínica de Medicamentos , Feminino , Fatores de Crescimento de Fibroblastos/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Redução de Peso , Adulto Jovem
19.
Cell Metab ; 23(2): 344-9, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26724861

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone induced by various metabolic stresses, including ketogenic and high-carbohydrate diets, that regulates energy homeostasis. In humans, SNPs in and around the FGF21 gene have been associated with macronutrient preference, including carbohydrate, fat, and protein intake. Here we show that FGF21 administration markedly reduces sweet and alcohol preference in mice and sweet preference in cynomolgus monkeys. In mice, these effects require the FGF21 co-receptor ß-Klotho in the central nervous system and correlate with reductions in dopamine concentrations in the nucleus accumbens. Since analogs of FGF21 are currently undergoing clinical evaluation for the treatment of obesity and type 2 diabetes, our findings raise the possibility that FGF21 administration could affect nutrient preference and other reward behaviors in humans.


Assuntos
Álcoois/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Preferências Alimentares/efeitos dos fármacos , Paladar/efeitos dos fármacos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Dopamina/metabolismo , Haplorrinos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Sacarina/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
Circulation ; 108(23): 2892-8, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14610017

RESUMO

BACKGROUND: Pulmonary embolism occurs frequently in hospitalized patients. Thrombolytic therapy, currently used as the major treatment, has often been associated with severe bleeding complications and has thereby been life-threatening. We have developed a novel therapeutic method based on our newly created pulmonary endothelium-specific antibody. METHODS AND RESULTS: We isolated membrane proteins of rat pulmonary vascular luminal endothelium and obtained a monoclonal antibody, RE8F5, which antigen was uniquely expressed by the pulmonary capillary endothelium. In vivo biodistribution showed that RE8F5 and its urokinase conjugate were rapidly and specifically accumulated in lung. Urokinase and the conjugate were compared in rats with pulmonary, hepatic, and lower-limb embolus. In a pulmonary embolus model, the conjugate exhibited 12-fold enhanced thrombolytic potency over urokinase, whereas plasma fibrinogen and bleeding time were unaffected. In 2 other models, no significant thrombolysis was induced by the conjugate. In contrast, thrombolysis by urokinase was found to be comparable to the pulmonary embolus model. In addition, urokinase caused significant consumption of fibrinogen in all experiments. CONCLUSIONS: These data show that urokinase equipped with lung endothelium-specific antibody is an ideal treatment for pulmonary embolism, with a high efficacy of thrombolysis and low risk of bleeding.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Fibrinolíticos/uso terapêutico , Imunoconjugados/uso terapêutico , Pulmão/irrigação sanguínea , Embolia Pulmonar/tratamento farmacológico , Terapia Trombolítica , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Especificidade de Anticorpos , Capilares/química , Capilares/imunologia , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/química , Endotélio Vascular/imunologia , Feminino , Fibrinogênio/análise , Fibrinolíticos/farmacocinética , Hemorragia/prevenção & controle , Imunoconjugados/farmacocinética , Proteínas de Membrana/imunologia , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Embolia Pulmonar/imunologia , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos , Distribuição Tecidual , Ativador de Plasminogênio Tipo Uroquinase/administração & dosagem , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA