Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 45(17): 1456-1469, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471809

RESUMO

B 6 O 7 OH 6 2 - is a highly polymerized borate anion of three six-membered rings. Limited research on the B 6 O 7 OH 6 2 - hydrolysis mechanism under neutral solution conditions exists. Calculations based on density functional theory show that B 6 O 7 OH 6 2 - undergoes five steps of hydrolysis to form H3BO3 and B OH 4 - . At the same time, there are a small number of borate ions with different degrees of polymerization during the hydrolysis process, such as triborate, tetraborate, and pentaborate anions. The structure of the borate anion and the coordination environment of the bridging oxygen atoms control the hydrolysis process. Finally, this work explains that in existing experimental studies, the reason for the low B 6 O 7 OH 6 2 - content in solution environments with low total boron concentrations is that it depolymerizes into other types of borate ions and clarifies the borate species. The conversion relationship provides a basis for identifying the possibility of various borate ions existing in the solution. This work also provides a certain degree of theoretical support for the cause of the "dilution to salt" phenomenon.

2.
Phys Chem Chem Phys ; 25(15): 10481-10494, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987608

RESUMO

Choline chloride (ChCl)-carboxylic acid deep eutectic solvents (DESs) are promising green solvents for lignocellulose pretreatment, de-aromatization of gasoline, battery recycling, etc. Micro interactions determine the physical properties of DESs, such as melting point, viscosity, and solubility. In the present work, the structures of choline chloride/formic acid (FA) and choline chloride/acetic acid (AA) with a 1 : 2 molar ratio were investigated by wide-angle X-ray scattering, empirical potential structure refinement (EPSR) and density functional theory (DFT) calculations. Reduced density gradient (RDG) and atoms in molecules (AIM) show that hydrogen bonds and carbon-hydrogen bonds exist in choline chloride-carboxylic acid DESs. EPSR modelling based on the gauche choline cation model reveals the interactions between DES components. Cl- plays an important role in maintaining the structural stability of choline chloride-carboxylic acid DESs, by participating in the formation of hydrogen bonds, carbon-hydrogen bonds, and acting as a bridge for indirect interaction, including between choline cations and carboxylic acid molecules. Molecular size and steric hindrance elucidate the formation of different sizes of clusters (≤10 molecules) and chains (≤5 molecules) in DESs. Spatial density functions show that formic acid and acetic acid have a strong orientational preference. The strong interaction between Ch+ and FA and the existence of the Cl- bridge significantly destroyed the lattice structure of ChCl, resulting in the melting point of ChClFA (<-90 °C) being lower than that of ChClAA (-8.98 °C). This fundamental understanding of the structure will enable the development of green, economical, and nontoxic choline chloride-carboxylic acid DESs.

3.
Phys Chem Chem Phys ; 25(17): 12207-12219, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092350

RESUMO

In this work, H/D isotopic substitution neutron diffraction was combined with empirical potential structure refinement (EPSR) and DFT-based quantum calculations to study the interactions between B(OH)3 boric acid molecules, B(OH)4- metaborate ions, water molecules, and potassium cations in borate solutions. The results show that the solute ions and molecules have a marked effect on the second coordination shell of the water molecules, causing a greater deviation from a tetrahedral structure than is observed for pure water. Potassium ions and trans-B(OH)3 tend to form a monodentate contact ion pair (MCIP) with a K-B distance ∼3.8 Å, which remains constant upon changing the solution concentration. Potassium ions and cis-B(OH)3 form both a MCIP at K-B ∼3.8 Å and a bidentate contact ion pair (BCIP) at K-B ∼3.4 Å. As the solution concentration increases, there is a BCIP to MCIP transformation. Boric acid molecules can undergo hydration in one of three ways: direct hydration, interstitial hydration, and axial hydration. The energetic hydration preference is direct hydration → interstitial hydration → axial hydration. Nine water molecules are required when all water molecules directly interact with the -OH groups of B(OH)4-, and a tenth water molecule is located at an interstitial position. The hydrogen bonding between boric acid molecule/metaborate ion and water molecules is stronger than that between water molecules in the hydration layer.

4.
Entropy (Basel) ; 25(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372290

RESUMO

Data clustering is one of the most influential branches of machine learning and data analysis, and Gaussian Mixture Models (GMMs) are frequently adopted in data clustering due to their ease of implementation. However, there are certain limitations to this approach that need to be acknowledged. GMMs need to determine the cluster numbers manually, and they may fail to extract the information within the dataset during initialization. To address these issues, a new clustering algorithm called PFA-GMM has been proposed. PFA-GMM is based on GMMs and the Pathfinder algorithm (PFA), and it aims to overcome the shortcomings of GMMs. The algorithm automatically determines the optimal number of clusters based on the dataset. Subsequently, PFA-GMM considers the clustering problem as a global optimization problem for getting trapped in local convergence during initialization. Finally, we conducted a comparative study of our proposed clustering algorithm against other well-known clustering algorithms using both synthetic and real-world datasets. The results of our experiments indicate that PFA-GMM outperformed the competing approaches.

5.
Angew Chem Int Ed Engl ; 62(41): e202311268, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615518

RESUMO

For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO- , the affinity of Zn2+ ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn2+ and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm2 ).

6.
Environ Sci Technol ; 56(12): 8920-8931, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35438974

RESUMO

Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda-) [E. coli (λ-)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2-) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our "inside-out" strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.


Assuntos
Bacteriófagos , Escherichia coli K12 , Gases em Plasma , Antibacterianos/farmacologia , Bactérias , Biofilmes , Escherichia coli , Gases em Plasma/farmacologia , Prófagos/fisiologia , Espécies Reativas de Oxigênio
7.
Phys Chem Chem Phys ; 24(37): 22939-22949, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125259

RESUMO

The structure of aqueous magnesium nitrate solution is gaining significant interest among researchers, especially whether contact ion pairs exist in concentrated solutions. Here, combining X-ray diffraction experiments, quantum chemical calculations and ab initio molecular dynamics simulations, we report that the [Mg(NO3)2] molecular structure in solution from the coexistence of a free [Mg(H2O)6]2+ octahedral supramolecular structure with a free [NO3(H2O)n]- (n = 11-13) supramolecular structure to an [Mg2+(H2O)n(NO3-)m] (n = 3, 4, 5; m = 3, 2, 1) associated structure with increasing concentration. Interestingly, two hydration modes of NO3--the nearest neighbor hydration with a hydration distance less than 3.9 Å and the next nearest neighbor hydration with hydration distance ranging from 3.9 to 4.3 Å-were distinguished. With an increase in the solution concentration, the hydrated NO3- ions lost outer layer water molecules, and the hexagonal octahedral hydration structure of [Mg(H2O)62+] was destroyed, resulting in direct contact between Mg2+ and NO3- ions in a monodentate way. As the concentration of the solution further increased, NO3- ions replaced water molecules in the hydration layer of Mg2+ to form three-ion clusters and even more complex chains or linear ion clusters.

8.
Phys Chem Chem Phys ; 23(16): 10130-10131, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870395

RESUMO

Correction for 'Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries' by Ryo Sakamoto et al., Phys. Chem. Chem. Phys., 2020, 22, 26452-26458, DOI: 10.1039/D0CP04376A.

9.
Analyst ; 145(6): 2245-2255, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-31994541

RESUMO

Potassium tetrahydroxyborate solution is a significant material in the borate solution family, but there is limited knowledge about hydration structures and interactions of K+, [B(OH)4-], and water. In this study, the X-ray diffraction measurements of potassium tetrahydroxyborate solutions have been made. The experimental structure factors are subjected to Empirical Potential Structure Refinement (EPSR) modeling to reveal the details of ion hydration and association in the aqueous solutions. This study shows that the O(W)-O(W) distance of water in the studied solutions ranges from 2.82 to 2.76 Å with a coordination number that ranges from 4.7 ± 1.4 to 3.1 ± 1.3 when the value of the water-salt molar ratio (WSR) is decreased from 30 to 6. The addition of ions slightly affects the tetrahedral structure of water even when the concentration of ions is high. The first hydration distance of K+ remained at ∼2.67 Å, whereas the value of the coordination number (CN) decreased from 5.4 ± 1.3 to 3.9 ± 1.5 when the concentration of the borate solution was increased. The hydration ability of K+ was weak and almost did not have a fixed local hydration structure. The pair distribution function (PDF) of gB-O(W)(r) shows that [B(OH)4-] has a broad hydration distance from 2.9 to 5.4 Å because of the complex interactive relationship between K+, [B(OH)4-] and water. There is a competitive hydration between K+ and [B(OH)4-]. Both the X-ray diffraction and DFT-based calculations confirm that the main species is monodentate contact ion pairs when WSR = 30, bidentate contact ion pairs when WSR = 14, and triple contact ion pairs when WSR = 6. These results will provide a new understanding about potassium tetrahydroxyborate solution.

10.
Phys Chem Chem Phys ; 22(30): 17160-17170, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32696778

RESUMO

The micro-structure of aqueous boric acid (H3BO3) solutions is of broad interest in earth sciences, geochemistry, material science, as well as chemical engineering. In the present study, the structure of aqueous H3BO3 solutions was studied via neutron scattering with 2H and 11B isotope labelling combined with empirical potential structure refinement (EPSR) modelling. In aqueous H3BO3 solutions, B(OH)3 is the dominant borate species. Density function theory (DFT) calculations show that the boron hydroxyl has a lower electrostatic potential (ESP), which makes B(OH)3 a relatively weakly hydrated, compared with the bulk water. In the 0.95 mol L-1 H3BO3 solution at 298 K (saturated), ∼18 water molecules enter the hydration sphere of B(OH)3 with the hydration distance (B-O(W)) of 3.75 Å, while only 4.23 of them hydrate with H3BO3 as the hydrogen bond (H-bond) acceptor or H-bond donor. Both neutron scattering and DFT calculations for 2B(OH)3·6H2O clusters at the ωB97XD/6-311++g(3df,3pd) basis level show that B(OH)3 forms molecular clusters in bidentate contact molecular pairs (BCMP), mono-dentate molecular pairs (MCMP), solvent-shared molecular pairs (SMP), and parallel solvent-shared molecular pairs (PSMP) in aqueous solutions. Their relative contents are both concentration- and temperature-sensitive. BCMP with the B-B distance of ∼4.1 Å is the dominant molecular pair in the aqueous solutions. Relatively less content and van der Waals interactions stabilized PSMP, with a B-B distance of ∼3.6 Å between the two parallel layers, which is a crucial species for the crystallization of H3BO3 from aqueous solution.

11.
Phys Chem Chem Phys ; 22(45): 26452-26458, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180893

RESUMO

Aqueous Na-ion batteries with highly concentrated NaClO4 aq. electrolytes are drawing attention as candidates for large-scale rechargeable batteries with a high safety level. However, the detailed mechanism by which the potential window in 17 m NaClO4 aq. electrolyte was expanded remains unclear. Therefore, we investigated the local structure around a Na+ ion or a ClO4- ion using X-ray diffraction combined with empirical potential structure refinement (EPSR) modelling and Raman spectroscopy. The results showed that in 17 m NaClO4 aq. electrolyte, most of the water molecules were coordinated to Na+ ions and few free water molecules were present. The 17 m NaClO4 aq. electrolyte could be interpreted as widening the potential window because almost all water molecules participated in hydration of the Na+ ions.

12.
Phys Chem Chem Phys ; 19(40): 27878-27887, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28991961

RESUMO

X-ray diffraction is used to study the structure of aqueous sodium metaborate solutions at salt concentrations of 1, 3, and 5 (oversaturated) mol dm-3. The X-ray structure factors are subjected to empirical potential structure refinement (EPSR) modelling to extract the individual site-site pair correlation functions, the coordination numbers, and the spatial density functions (three-dimensional structure) of ion hydration and association as well as solvent water in the borate solutions. The sodium ion is surrounded on average by (5.4 ± 0.7), (4.6 ± 1.0), and (3.7 ± 1.2) water molecules at 1, 3, and 5 mol dm-3, respectively, with the Na-O (H2O) distance of 2.34 Å. The decrease in hydration number of the sodium ion is compensated by direct binding of the oxygen atom of the borate ion, B(OH)4-, with the average coordination number of (0.2 ± 0.5), (1.0 ± 0.8), and (2.1 ± 1.3) at the Na-O(B) distance of 2.34 Å to keep the octahedral hydration shell of the sodium ion. The average number of water molecules around the borate ion is (13.9 ± 1.8), (14.2 ± 1.8), and (16.1 ± 2.4) per borate ion with increasing salt concentration with the B-O(H2O) distance of 3.72 Å. The number of nearest-neighbour water molecules around a central water molecule in a solvent decreases as (4.8 ± 1.2), (3.8 ± 1.1), and (2.8 ± 1.1) with an increase in salt concentration with the O(H2O)-O(H2O) distance of 2.79 Å. The Na+-B(OH)4- ion association is characterized by the Na-O(B) and Na-B pair correlation functions. The Na-B interactions are observed at 3.00 Å as a shoulder and 3.57 Å as a main peak in the site-site pair correlation function, suggesting two occupancy sites of Na+ with one for the edge-shared bidentate bonding and the other for the corner-shared monodentate bonding. The total number of Na-B interactions at 3.00 and 3.57 Å is consistent with that of the Na-O(B) interactions. The detailed three-dimensional structure of the ion hydration and association is visualized as a function of salt concentration. The structure and stability of [NaB(OH)4(H2O)6]0 clusters are further investigated by DFT calculations, and the most likely structure is proposed and cross-checked.

13.
J Phys Chem A ; 121(47): 9146-9155, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29116808

RESUMO

Hydridic-to-protonic interactions in unconventional dihydrogen bonding influence the structure, reactivity, and selectivity in solution and in the solid state. In this study, the structure, stability, and Raman spectra of BH4- hydrated clusters, [BH4(H2O)n]- (n = 1-8, 10, 12, 14, 16) are systematically investigated using density functional theory (DFT) at the wB97XD/6-311++g(3df,3pd) basis set level. The successive microhydration process is described to illustrate in detail the changes in dihydrogen bonding with increasing hydration cluster size. The results of DFT calculations indicate that seven or eight water molecules hydrate BH4- with a total of 12 dihydrogen bonds in the tetrahedral edge or tetrahedral corner forms, and a maximum of six water molecules in the tetrahedral-edge form. Raman spectra of [BH4(H2O)n]- show a blue shift in the B-H stretching band due to hydration. Car-Parrinello molecular dynamics simulations verify strong BH4- water interactions. The hydration number of BH4- is 6.7, with a hydration B-O(W) distance of 3.40 Å, and each hydrogen in BH4- bonds with 2.66 hydrogen atoms from water.

14.
ScientificWorldJournal ; 2014: 938239, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772039

RESUMO

Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.


Assuntos
Algoritmos , Inteligência Artificial , Análise por Conglomerados , Mineração de Dados/métodos , Animais , Simulação por Computador , Haplorrinos/fisiologia , Reprodutibilidade dos Testes
15.
ScientificWorldJournal ; 2014: 237102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967425

RESUMO

Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: "bats approach their prey." Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization.


Assuntos
Algoritmos , Quirópteros , Modelos Teóricos , Animais , Comportamento Animal
16.
ScientificWorldJournal ; 2014: 630280, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243220

RESUMO

A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.


Assuntos
Algoritmos , Simulação por Computador , Design de Software , Simulação por Computador/normas
17.
Biomimetics (Basel) ; 9(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534872

RESUMO

Feature selection aims to select crucial features to improve classification accuracy in machine learning and data mining. In this paper, a new binary grasshopper optimization algorithm using time-varying Gaussian transfer functions (BGOA-TVG) is proposed for feature selection. Compared with the traditional S-shaped and V-shaped transfer functions, the proposed Gaussian time-varying transfer functions have the characteristics of a fast convergence speed and a strong global search capability to convert a continuous search space to a binary one. The BGOA-TVG is tested and compared to S-shaped and V-shaped binary grasshopper optimization algorithms and five state-of-the-art swarm intelligence algorithms for feature selection. The experimental results show that the BGOA-TVG has better performance in UCI, DEAP, and EPILEPSY datasets for feature selection.

18.
J Adv Res ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39312999

RESUMO

INTRODUCTION: Big data optimization (Big-Opt) problems present unique challenges in effectively managing and optimizing the analytical properties inherent in large-scale datasets. The complexity and size of these problems render traditional data processing methods insufficient. OBJECTIVES: In this study, we propose a new multi-objective optimization algorithm called the multi-objective African vulture optimization algorithm with binary hierarchical structure and tree topology (MO_Tree_BHSAVOA) to solve Big-Opt problem. METHODS: In MO_Tree_BHSAVOA, a binary hierarchical structure (BHS) is incorporated to effectively balance exploration and exploitation capabilities within the algorithm; shift density estimation is introduced as a mechanism for providing selection pressure for population evolution; and a tree topology is employed to reinforce the algorithm's ability to escape local optima and preserve optimal non-dominated solutions. The performance of the proposed algorithm is evaluated using CEC 2020 multi-modal multi-objective benchmark functions and CEC 2021 real-world constrained multi-objective optimization problems and is applied to Big-Opt problems. RESULTS: The performance is analyzed by comparing the results obtained with other multi-objective optimization algorithms and using Friedman's statistical test. The results show that the proposed MO_Tree_BHSAVOA not only provides very competitive results, but also outperforms other algorithms. CONCLUSION: These findings validate the effectiveness and potential applicability of MO_Tree_BHSAVOA in addressing the optimization challenges associated with big data.

19.
ACS Appl Mater Interfaces ; 16(26): 33439-33450, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889105

RESUMO

Photoactive colloidal motors whose motion can be controlled and even programed via external magnetic fields have significant potential in practical applications extending from biomedical fields to environmental remediation. Herein, we report a "three in one" strategy in a Co/Zn-TPM (3-trimethoxysilyl propyl methacrylate) bimetallic Janus colloidal micromotor (BMT-micromotor) which can be controlled by an optical field, chemical fuel, and magnetic field. The speed of the micromotors can be tuned by light intensity and with the concentration of the chemical fuel of H2O2, while it could be steered and programed through magnetic field due to the presence of Co in the bimetallic part. Finally, the BMT-micromotors were employed to effectively remove rubidium metal ions and organic dyes (methylene blue and rhodamine b). Benefited of excellent mobility, multiple active sites, and hierarchical morphology, the micromotors exhibit excellent adsorption capacity of 103 mg·g-1 to Rb metal ions and high photodegradation efficiency toward organic dyes in the presence of a lower concentration of H2O2. The experimental characterizations and DFT calculations confirmed the strong interaction of Rb metal ions on the surface of BMT-micromotors and the excellent decomposition of H2O2 which enhanced the photodegradation process. We expect the combination of light and fuel sensitivity with magnetic controllability to unlock an excess of opportunities for the application of BMT-micromotors in water treatments.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38324432

RESUMO

To automatically mine structured semantic topics from text, neural topic modeling has arisen and made some progress. However, most existing work focuses on designing a mechanism to enhance topic coherence but sacrificing the diversity of the extracted topics. To address this limitation, we propose the first neural-based topic modeling approach purely based on mutual information maximization, called the mutual information topic (MIT) model, in this article. The proposed MIT significantly improves topic diversity by maximizing the mutual information between word distribution and topic distribution. Meanwhile, MIT also utilizes Dirichlet prior in latent topic space to ensure the quality of mined topics. The experimental results on three publicly benchmark text corpora show that MIT could extract topics with higher coherence values (considering four topic coherence metrics) than competitive approaches and has a significant improvement on topic diversity metric. Besides, our experiments prove that the proposed MIT converges faster and more stable than adversarial-neural topic models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA