Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(39): e2208496119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122204

RESUMO

Allotetraploid cotton (Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton, Gossypium ekmanianum [(AD)6, Ge] and Gossypium stephensii [(AD)7, Gs], and one early form of domesticated Gossypium hirsutum, race punctatum [(AD)1, Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploid Gossypium clade and resolved the evolutionary relationships of Gs, Ge, and domesticated G. hirsutum. We describe genomic structural variation that arose during Gossypium evolution and describe its correlates-including phenotypic differentiation, genetic isolation, and genetic convergence-that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimproved Ghp offers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture.


Assuntos
Evolução Molecular , Genoma de Planta , Gossypium , Fibra de Algodão , Variação Genética/genética , Genoma de Planta/genética , Gossypium/classificação , Gossypium/genética , Isomerases/genética , Isomerases/metabolismo , Tetraploidia
2.
Funct Integr Genomics ; 23(4): 331, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940771

RESUMO

High yield has always been an essential target in almost all of the cotton breeding programs. Boll weight (BW) is a key component of cotton yield. Numerous linkage mapping and genome-wide association studies (GWAS) have been performed to understand the genetic mechanism of BW, but information on the markers/genes controlling BW remains limited. In this study, we conducted a GWAS for BW using 51,268 high-quality single-nucleotide polymorphisms (SNPs) and 189 Gossypium hirsutum accessions across five different environments. A total of 55 SNPs significantly associated with BW were detected, of which 29 and 26 were distributed in the A and D subgenomes, respectively. Five SNPs were simultaneously detected in two environments. For TM5655, TM8662, TM36371, and TM50258, the BW grouped by alleles of each SNP was significantly different. The ± 550 kb regions around these four key SNPs contained 262 genes. Of them, Gh_A02G1473, Gh_A10G1765, and Gh_A02G1442 were expressed highly at 0 to 1 days post-anthesis (dpa), - 3 to 0 dpa, and - 3 to 0 dpa in ovule of TM-1, respectively. They were presumed as the candidate genes for fiber cell differentiation, initiation, or elongation based on gene annotation of their homologs. Overall, these results supplemented valuable information for dissecting the genetic architecture of BW and might help to improve cotton yield through molecular marker-assisted selection breeding and molecular design breeding.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Fenótipo , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
3.
Funct Integr Genomics ; 23(2): 142, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121989

RESUMO

The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.


Assuntos
Ascomicetos , Neoplasias , Verticillium , Gossypium/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Verticillium/metabolismo , Ascomicetos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética
4.
BMC Plant Biol ; 23(1): 14, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609252

RESUMO

BACKGROUND: Current climate change scenarios are posing greater threats to the growth and development of plants. Thus, significant efforts are required that can mitigate the negative effects of drought on the cotton plant. GDSL esterase/lipases can offer an imperative role in plant development and stress tolerance. However, thesystematic and functional roles of the GDSL gene family, particularly in cotton under water deficit conditions have not yet been explored. RESULTS: In this study, 103, 103, 99, 198, 203, 239, 249, and 215 GDSL proteins were identified in eight cotton genomes i.e., Gossypium herbaceum (A1), Gossypium arboretum (A2), Gossypium raimondii (D5), Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium tomentosum (AD3), Gossypium mustelinum (AD4), Gossypium darwinii (AD5), respectively. A total of 198 GDSL genes of Gossypium hirsutum were divided into eleven clades using phylogenetic analysis, and the number of GhirGDSL varied among different clades. The cis-elements analysis showed that GhirGDSL gene expression was mainly related to light, plant hormones, and variable tense environments. Combining the results of transcriptome and RT-qPCR, GhirGDSL26 (Gh_A01G1774), a highly up-regulated gene, was selected for further elucidating its tole in drought stress tolerance via estimating physiological and biochemical parameters. Heterologous expression of the GhirGDSL26 gene in Arabidopsis thaliana resulted in a higher germination and survival rates, longer root lengths, lower ion leakage and induced stress-responsive genes expression under drought stress. This further highlighted that overexpressed plants had a better drought tolerance as compared to the wildtype plants. Moreover, 3, 3'-diaminobenzidine (DAB) and Trypan staining results indicated reduced oxidative damage, less cell membrane damage, and lower ion leakage in overexpressed plants as compared to wild type. Silencing of GhirGDSL26 in cotton via VIGS resulting in a susceptible phenotype, higher MDA and H2O2 contents, lower SOD activity, and proline content. CONCLUSION: Our results demonstrated that GhirGDSL26 plays a critical role in cotton drought stress tolerance. Current findings enrich our knowledge of GDSL genes in cotton and provide theoretical guidance and excellent gene resources for improving drought tolerance in cotton.


Assuntos
Arabidopsis , Gossypium , Secas , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
5.
BMC Plant Biol ; 23(1): 501, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848871

RESUMO

BACKGROUND: The cotton industry suffers significant yield losses annually due to Verticillium wilt, which is considered the most destructive disease affecting the crop. However, the precise mechanisms behind this disease in cotton remain largely unexplored. METHODS: Our approach involved utilizing transcriptome data from G. australe which was exposed to Verticillium dahliae infection. From this data, we identified ethylene-responsive factors and further investigated their potential role in resistance through functional validations via Virus-induced gene silencing (VIGS) in cotton and overexpression in Arabidopsis. RESULTS: A total of 23 ethylene response factors (ERFs) were identified and their expression was analyzed at different time intervals (24 h, 48 h, and 72 h post-inoculation). Among them, GauERF105 was selected based on qRT-PCR expression analysis for further investigation. To demonstrate the significance of GauERF105, VIGS was utilized, revealing that suppressing GauERF105 leads to more severe infections in cotton plants compared to the wild-type. Additionally, the silenced plants exhibited reduced lignin deposition in the stems compared to the WT plants, indicating that the silencing of GauERF105 also impacts lignin content. The overexpression of GauERF105 in Arabidopsis confirmed its pivotal role in conferring resistance against Verticillium dahliae infection. Our results suggest that WT possesses higher levels of the oxidative stress markers MDA and H2O2 as compared to the overexpressed lines. In contrast, the activities of the antioxidant enzymes SOD and POD were higher in the overexpressed lines compared to the WT. Furthermore, DAB and trypan staining of the overexpressed lines suggested a greater impact of the disease in the wild-type compared to the transgenic lines. CONCLUSIONS: Our findings provide confirmation that GauERF105 is a crucial candidate in the defense mechanism of cotton against Verticillium dahliae invasion, and plays a pivotal role in this process. These results have the potential to facilitate the development of germplasm resistance in cotton.


Assuntos
Arabidopsis , Ascomicetos , Verticillium , Gossypium/genética , Gossypium/metabolismo , Arabidopsis/genética , Lignina/metabolismo , Peróxido de Hidrogênio/metabolismo , Verticillium/fisiologia , Ascomicetos/metabolismo , Etilenos , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
6.
Physiol Plant ; 175(6): e14113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148227

RESUMO

Plant Carbonic anhydrases (Cas) have been shown to be stress-responsive enzymes that may play a role in adapting to adverse conditions. Cotton is a significant economic crop in China, with upland cotton (Gossypium hirsutum) being the most widely cultivated species. We conducted genome-wide identification of the ßCA gene in six cotton species and preliminary analysis of the ßCA gene in upland cotton. In total, 73 ßCA genes from six cotton species were identified, with phylogenetic analysis dividing them into five subgroups. GHßCA proteins were predominantly localized in the chloroplast and cytoplasm. The genes exhibited conserved motifs, with motifs 1, 2, and 3 being prominent. GHßCA genes were unevenly distributed across chromosomes and were associated with stress-responsive cis-regulatory elements, including those responding to light, MeJA, salicylic acid, abscisic acid, cell cycle regulation, and defence/stress. Expression analysis indicated that GHßCA6, GHßCA7, GHßCA10, GHßCA15, and GHßCA16 were highly expressed under various abiotic stress conditions, whereas GHßCA3, GHßCA9, GHßCA10, and GHßCA18 had higher expression patterns under Verticillium dahliae infection at different time intervals. In Gossypium thurberi, GthßCA1, GthßCA2, and GthßCA4 showed elevated expression across stress conditions and tissues. Silencing GHßCA10 through VIGS increased Verticillium wilt severity and reduced lignin deposition compared to non-silenced plants. GHßCA10 is crucial for cotton's defense against Verticillium dahliae. Further research is needed to understand the underlying mechanisms and develop strategies to enhance resistance against Verticillium wilt.


Assuntos
Ascomicetos , Resiliência Psicológica , Verticillium , Gossypium/genética , Gossypium/metabolismo , Filogenia , Verticillium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Environ Res ; 232: 116365, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301497

RESUMO

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.


Assuntos
Poluição do Ar , Ecossistema , Poluição do Ar/prevenção & controle , Algoritmos , Cidades , Simulação por Computador
8.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373552

RESUMO

Lint percentage is one of the most essential yield components and an important economic index for cotton planting. Improving lint percentage is an effective way to achieve high-yield in cotton breeding worldwide, especially upland cotton (Gossypium hirsutum L.). However, the genetic basis controlling lint percentage has not yet been systematically understood. Here, we performed a genome-wide association mapping for lint percentage using a natural population consisting of 189 G. hirsutum accessions (188 accessions of G. hirsutum races and one cultivar TM-1). The results showed that 274 single-nucleotide polymorphisms (SNPs) significantly associated with lint percentage were detected, and they were distributed on 24 chromosomes. Forty-five SNPs were detected at least by two models or at least in two environments, and their 5 Mb up- and downstream regions included 584 makers related to lint percentage identified in previous studies. In total, 11 out of 45 SNPs were detected at least in two environments, and their 550 Kb up- and downstream region contained 335 genes. Through RNA sequencing, gene annotation, qRT-PCR, protein-protein interaction analysis, the cis-elements of the promotor region, and related miRNA prediction, Gh_D12G0934 and Gh_A08G0526 were selected as key candidate genes for fiber initiation and elongation, respectively. These excavated SNPs and candidate genes could supplement marker and gene information for deciphering the genetic basis of lint percentage and facilitate high-yield breeding programs of G. hirsutum ultimately.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Fibra de Algodão , Locos de Características Quantitativas , Fenótipo , Melhoramento Vegetal
9.
BMC Genomics ; 23(1): 648, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096725

RESUMO

BACKGROUND: Crops face several environmental stresses (biotic and abiotic), thus resulting in severe yield losses. Around the globe abiotic stresses are the main contributors of plant damages, primarily drought and salinity. Many genes and transcription factors are involved in abiotic and biotic stress responses. NAC TF (Transcription Factors) improves tolerance to stresses by controlling the physiological and enzyme activities of crops. RESULTS: In current research, GhNAC072 a highly upregulated TF in RNA-Seq was identified as a hub gene in the co-expression network analysis (WGCNA). This gene was transformed to Arabidopsis thaliana to confirm its potential role in drought and salt stress tolerance. Significant variations were observed in the morpho-physiological traits with high relative leaf water contents, chlorophyll contents, higher germination and longer root lengths of the overexpressed lines and low excised leaf loss and ion leakage as compared to the wildtype plants. Besides, overexpressed lines have higher amounts of antioxidants and low oxidant enzyme activities than the wildtype during the period of stress exposure. CONCLUSIONS: In summary, the above analysis showed that GhNAC072 might be the true candidate involved in boosting tolerance mechanisms under drought and salinity stress.


Assuntos
Arabidopsis , Arabidopsis/genética , Secas , Gossypium/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Fatores de Transcrição/genética
10.
J Exp Bot ; 73(3): 873-885, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34153103

RESUMO

Mesophyll conductance (gm) is a crucial leaf trait contributing to the photosynthetic rate (AN). Plant domestication typically leads to an enhancement of AN that is often associated with profound anatomical modifications, but it is unclear which of these structural alterations influence gm. We analyzed the implication of domestication on leaf anatomy and its effect on gm in 26 wild and 31 domesticated cotton genotypes (Gossypium sp.) grown under field conditions. We found that domesticated genotypes had higher AN but similar gm to wild genotypes. Consistent with this, domestication did not translate into significant differences in the fraction of mesophyll occupied by intercellular air spaces (fias) or mesophyll and chloroplast surface area exposed to intercellular air space (Sm/S and Sc/S, respectively). However, leaves of domesticated genotypes were significantly thicker, with larger but fewer mesophyll cells with thinner cell walls. Moreover, domesticated genotypes had higher cell wall conductance (gcw) but smaller cytoplasmic conductance (gcyt) than wild genotypes. It appears that domestication in cotton has not generally led to significant improvement in gm, in part because their thinner mesophyll cell walls (increasing gcw) compensate for their lower gcyt, itself due to larger distance between plasmalemma and chloroplast envelopes.


Assuntos
Gossypium , Células do Mesofilo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Gossypium/genética , Fotossíntese , Folhas de Planta/genética
11.
Ann Bot ; 130(2): 231-243, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35849070

RESUMO

BACKGROUND AND AIMS: The process of domestication has driven dramatic shifts in plant functional traits, including leaf mass per area (LMA). It remains unclear whether domestication has produced concerted shifts in the lower-level anatomical traits that underpin LMA and how these traits in turn affect photosynthesis. METHODS: In this study we investigated controls of LMA and leaf gas exchange by leaf anatomical properties at the cellular, tissue and whole-leaf levels, comparing 26 wild and 31 domesticated genotypes of cotton (Gossypium). KEY RESULTS: As expected, domesticated plants expressed lower LMA, higher photosynthesis and higher stomatal conductance, suggesting a shift towards the 'faster' end of the leaf economics spectrum. At whole-leaf level, variation in LMA was predominantly determined by leaf density (LD) both in wild and domesticated genotypes. At tissue level, higher leaf volume per area (Vleaf) in domesticated genotypes was driven by a simultaneous increase in the volume of epidermal, mesophyll and vascular bundle tissue and airspace, while lower LD resulted from a lower volume of palisade tissue and vascular bundles (which are of high density), paired with a greater volume of epidermis and airspace, which are of low density. The volume of spongy mesophyll exerted direct control on photosynthesis in domesticated genotypes but only indirect control in wild genotypes. At cellular level, a shift to larger but less numerous cells with thinner cell walls underpinned a lower proportion of cell wall mass, and thus a reduction in LD. CONCLUSIONS: Taken together, cotton domestication has triggered synergistic shifts in the underlying determinants of LMA but also photosynthesis, at cell, tissue and whole-leaf levels, resulting in a marked shift in plant ecological strategy.


Assuntos
Domesticação , Gossypium , Gossypium/genética , Fotossíntese , Folhas de Planta/genética , Plantas
12.
Mol Biol Rep ; 49(12): 11341-11350, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907118

RESUMO

BACKGROUND: Wild cotton Gossypium darwinii, an allotetraploid harbours important traits useful for tolerating abiotic stress, i.e., drought, salt and good genetic stability, hence these characteristics can be transferred to cultivated cotton for genetic improvement. MATERIALS AND METHODS: In this study, we analyzed the RNA-seq transcriptomes from leaves of G. darwinii seedlings with and without drought stress. A total of 86.7 million valid reads with an average length of 95.79 bp were generated from the two samples and 58,960 transcripts with a length of more than 500 bp were assembled. We searched the known proteins on the strength of sequence similarity; these transcripts were annotated with COG, KEGG and GO functional categories. According to gene expression abundance RPKM value, we carried out RT-qPCR analysis to determine the expression pattern of the obtained transcription factors. RESULTS: A total of 58,960 genes was differentially expressed (DEG), with 32,693 and 25,919 genes found to be upregulated and downregulated, respectively. Through gene ontology and KEGG pathways, the upregulated genes were found to associate with all the GO terms, molecular functions (MF), biological process (BP) and cellular components (CC), which are highly linked to enhancing drought stress tolerance. CONCLUSION: The study provides an in-depth knowledge of regulation of pathways and genes involved in photosynthesis during drought stress in G. darwinii. These pathways and genes were found to be significantly downregulated and this information could be further utilized by cotton breeders in developing a more drought tolerant cotton germplasm.


Assuntos
Secas , Gossypium , Gossypium/genética , Transcriptoma/genética , Estresse Fisiológico/genética , Plântula/genética , Regulação da Expressão Gênica de Plantas/genética
13.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269989

RESUMO

As one of the pioneer crops widely planted in saline-alkaline areas, Gossypium provides daily necessities, including natural fiber, vegetable proteins, and edible oils. However, cotton fiber yield and quality are highly influenced by salt stress. Therefore, elucidating the molecular mechanisms of cotton in response to salinity stress is importance to breed new cultivars with high tolerance. In this study, we first developed a method for single-cell RNA-seq based on isolating protoplast from cotton root tips; then, we studied the impact of salinity stress on gene expression profiling and their dynamic changes using the developed high-efficiency method for protoplast dissociation suitable for single-cell RNA-seq. A total of 3391 and 2826 differentially expressed genes (DEGs) were identified in salt-treated samples before and after protoplast dissociation, respectively, which were enriched into several molecular components, including response to stimulus, response to stress, and cellular macromolecule metabolic process by gene ontology (GO) analysis. Plant hormone signal transduction, phenylpropanoid biosynthesis, and MAPK signaling pathway were found to be enriched via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Twenty-two and nine salinity-responsive DEGs participated in plant hormone signaling and MAPK signaling in roots, before and after protoplast dissociation, respectively; six upregulated DEGs were involved in ABA signaling transduction, namely, Ga04G2111, Ga07G0142, Ga09G2061, Ga10G0262, Ga01G0063, and Ga08G1915 which indicates their potential functions on plants adapting to salt stress. Additionally, 384 and 257 transcription factors (TFs) were differentially expressed in salt-stress roots before and after protoplast dissociation, respectively, of which significantly up-regulated TFs mainly belonged to the AP2/ERF-ERF family, which implied their potential roles responding to salt stress. These results not only provide novel insights to reveal the regulatory networks in plant's root response to salt stress, but also lay the solid foundation for further exploration on cellular heterogeneity by single-cell transcriptome sequencing.


Assuntos
Gossypium , Reguladores de Crescimento de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Protoplastos , Estresse Salino/genética , Estresse Fisiológico/genética , Transcriptoma
14.
Photosynth Res ; 150(1-3): 239-250, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34669149

RESUMO

Domestication involves dramatic phenotypic and physiological diversifications due to successive selection by breeders toward high yield and quality. Although photosynthetic nitrogen use efficiency (PNUE) is a major trait for understanding leaf nitrogen economy, it is unclear whether PNUE of cotton has been improved under domestication. Here, we investigated the effect of domestication on nitrogen allocation to photosynthetic machinery and PNUE in 25 wild and 37 domesticated cotton genotypes. The results showed that domesticated genotypes had higher nitrogen content per mass (Nm), net photosynthesis under saturated light (Asat), and PNUE but similar nitrogen content per area (Na) compared with wild genotypes. As expected, in both genotypes, PNUE was positively related to Asat but negatively correlated with Na. However, the relative contribution of Asat to PNUE was greater than the contribution from Na. Domesticated genotypes had higher nitrogen allocation to light-harvesting (NL, nitrogen in light-harvesting chlorophyll-protein complex), to bioenergetics (Nb, total nitrogen of cytochrome f, ferredoxin NADP reductase, and the coupling factor), and to Rubisco (Nr) than wild genotypes; however, the two genotype groups did not differ in PNUEp, the ratio of Asat to Np (itself the sum of NL, Nb, and Nr). Our results suggest that more nitrogen allocation to photosynthetic machinery has boosted Asat under cotton domestication. Improving the efficiency of nitrogen use in photosynthetic machinery might be future aim to enhance Asat of cotton.


Assuntos
Domesticação , Nitrogênio , Fotossíntese , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
15.
Genomics ; 112(2): 1902-1915, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733270

RESUMO

In this investigation, whole-genome identification and functional characterization of the cotton dehydrin genes was carried out. A total of 16, 7, and 7 dehydrin proteins were identified in G. hirsutum, G. arboreum and G. raimondii, respectively. Through RNA sequence data and RT-qPCR validation, Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) were highly upregulated, and knockdown of the two genes, significantly reduced the ability of the plants to tolerate the effects of osmotic and salt stress. The VIGS-plants recorded significantly higher concentration levels of oxidants, hydrogen peroxide (H2O2) and malondialdehyde (MDA), furthermore, the four stress responsive genes GhLEA2, Gh_D12G2017 (CDKF4), Gh_A07G0747 (GPCR) and a transcription factor, trihelix, Gh_A05G2067, were significantly downregulated in VIGS-plants, but upregulated in wild types under osmotic and salt stress condition. The result indicated that dehydrin proteins are vital for plants and can be exploited in developing a more osmotic and salt stress-resilient germplasm to boost and improve cotton production.


Assuntos
Gossypium/genética , Pressão Osmótica , Proteínas de Plantas/genética , Tolerância ao Sal , Gossypium/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo
16.
BMC Genomics ; 21(1): 15, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906862

RESUMO

BACKGROUND: Cotton grows in altering environments that are often unfavorable or stressful for its growth and development. Consequently, the plant must cope with abiotic stresses such as soil salinity, drought, and excessive temperatures. Alkali-salt stress response remains a cumbersome biological process and is regulated via a multifaceted transcriptional regulatory network in cotton. RESULTS: To discover the molecular mechanisms of alkali-salt stress response in cotton, a comprehensive transcriptome analysis was carried out after alkali-salt stress treatment in three accessions of Gossypium hirsutum with contrasting phenotype. Expression level analysis proved that alkali-salt stress response presented significant stage-specific and tissue-specific. GO enrichment analysis typically suggested that signal transduction process involved in salt-alkali stress response at SS3 and SS12 stages in leaf; carbohydrate metabolic process and oxidation-reduction process involved in SS48 stages in leaf; the oxidation-reduction process involved at all three phases in the root. The Co-expression analysis suggested a potential GhSOS3/GhCBL10-SOS2 network was involved in salt-alkali stress response. Furthermore, Salt-alkali sensitivity was increased in GhSOS3 and GhCBL10 Virus-induced Gene Silencing (VIGS) plants. CONCLUSION: The findings may facilitate to elucidate the underlying mechanisms of alkali-salt stress response and provide an available resource to scrutinize the role of candidate genes and signaling pathway governing alkali-salt stress response.


Assuntos
Redes Reguladoras de Genes , Gossypium/genética , Estresse Salino , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Álcalis/química , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Gossypium/anatomia & histologia , Gossypium/classificação , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Interferência de RNA , Especificidade da Espécie
17.
BMC Plant Biol ; 20(1): 518, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183239

RESUMO

BACKGROUND: Wild species of cotton are excellent resistance to abiotic stress. Diploid D-genome cotton showed abundant phenotypic diversity and was the putative donor species of allotetraploid cotton which produce the largest textile natural fiber. RESULTS: A total of 41,053 genes were expressed in all samples by mapping RNA-seq Illumina reads of G. thurberi (D1), G. klotzschianum (D3-k), G. raimondii (D5) and G. trilobum (D8) to reference genome. The numbers of differently expressed genes (DEGs) were significantly higher under cold stress than salt stress. However, 34.1% DEGs under salt stress were overlapped with cold stress in four species. Notably, a potential shared network (cold and salt response, including 16 genes) was mined out by gene co-expression analysis. A total of 47,180-55,548 unique genes were identified in four diploid species by De novo assembly. Furthermore, 163, 344, 330, and 161 positively selected genes (PSGs) were detected in thurberi, G. klotzschianum, G. raimondii and G. trilobum by evolutionary analysis, respectively, and 9.5-17% PSGs of four species were DEGs in corresponding species under cold or salt stress. What's more, most of PSGs were enriched GO term related to response to stimulation. G. klotzschianum showed the best tolerance under both cold and salt stress. Interestingly, we found that a RALF-like protein coding gene not only is PSGs of G. klotzschianum, but also belongs to the potential shared network. CONCLUSION: Our study provided new evidence that gene expression variations of evolution by natural selection were essential drivers of the morphological variations related to environmental adaptation during evolution. Additionally, there exist shared regulated networks under cold and salt stress, such as Ca2+ signal transduction and oxidation-reduction mechanisms. Our work establishes a transcriptomic selection mechanism for altering gene expression of the four diploid D-genome cotton and provides available gene resource underlying multi-abiotic resistant cotton breeding strategy.


Assuntos
Resposta ao Choque Frio/genética , Diploide , Evolução Molecular , Gossypium/genética , Gossypium/fisiologia , Estresse Salino/genética , Transcriptoma/genética , Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Genótipo , Filogenia , Estresse Salino/fisiologia
18.
Plant Biotechnol J ; 18(3): 814-828, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31479566

RESUMO

The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.


Assuntos
Resistência à Doença , Gossypium/genética , Austrália , Diploide , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Morfogênese , Doenças das Plantas/genética
19.
BMC Genomics ; 20(1): 651, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412764

RESUMO

BACKGROUND: The efficient detection and initiation of appropriate response to abiotic stresses are important to plants survival. The plant G-protein coupled receptors (GPCRs) are diverse membranous proteins that are responsible for signal transduction. RESULTS: In this research work, we identified a novel gene of the GPCR domain, transformed and carried out the functional analysis in Arabidopsis under drought and cold stresses. The transgenic lines exposed to drought and cold stress conditions showed higher germination rate, increased root length and higher fresh biomass accumulation. Besides, the levels of antioxidant enzymes, glutathione (GSH) and ascorbate peroxidase (APX) exhibited continuously increasing trends, with approximately threefold higher than the control, implying that these ROS-scavenging enzymes were responsible for the detoxification of ROS induced by drought and cold stresses. Similarly, the transgenic lines exhibited stable cell membrane stability (CMS), reduced water loss rate in the detached leaves and significant values for the saturated leaves compared to the wild types. Highly stress-responsive miRNAs were found to be targeted by the novel gene and based on GO analysis; the protein encoded by the gene was responsible for maintaining an integral component of membrane. In cotton, the virus-induced gene silencing (VIGS) plants exhibited a higher susceptibility to drought and cold stresses compared to the wild types. CONCLUSION: The novel GPCR gene enhanced drought and cold stress tolerance in transgenic Arabidopsis plants by promoting root growth and induction of ROS scavenging enzymes. The outcome showed that the gene had a role in enhancing drought and cold stress tolerance, and can be further exploited in breeding for more stress-resilient and tolerant crops.


Assuntos
Resposta ao Choque Frio/genética , Secas , Gossypium/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Receptores Acoplados a Proteínas G/genética , Biomassa , Ontologia Genética , Inativação Gênica , Germinação/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , MicroRNAs/genética , Pressão Osmótica , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/deficiência
20.
BMC Genet ; 20(1): 62, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337336

RESUMO

BACKGROUND: Auxins play an important role in plant growth and development; the auxins responsive gene; auxin/indole-3-acetic acid (Aux/IAA), small auxin-up RNAs (SAUR) and Gretchen Hagen3 (GH3) control their mechanisms. The GH3 genes function in homeostasis by the catalytic activities in auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. RESULTS: In our study, we identified the GH3 genes in three cotton species; Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, analyzed their chromosomal distribution, phylogenetic relationships, cis-regulatory element function and performed virus induced gene silencing of the novel Gh_A08G1120 (GH3.5) gene. The phylogenetic tree showed four clusters of genes with clade 1, 3 and 4 having mainly members of the GH3 of the cotton species while clade 2 was mainly members belonging to Arabidopsis. There were no paralogous genes, and few orthologous genes were observed between Gossypium and other species. All the GO terms were detected, but only 14 genes were found to have described GO terms in upland cotton, more biological functions were detected, as compared to the other functions. The GH3.17 subfamily harbored the highest number of the cis-regulatory elements, most having promoters towards dehydration-responsiveness. The RNA expression analysis revealed that 10 and 8 genes in drought and salinity stress conditions respectively were upregulated in G. hirsutum. All the genes that were upregulated in plants under salt stress conditions were also upregulated in drought stress; moreover, Gh_A08G1120 (GH3.5) exhibited a significant upregulation across the two stress factors. Functional characterization of Gh_A08G1120 (GH3.5) through virus-induced gene silencing (VIGS) revealed that the VIGS plants ability to tolerate drought and salt stresses was significantly reduced compared to the wild types. The chlorophyll content, relative leaf water content (RLWC), and superoxide dismutase (SOD) concentration level were reduced significantly while malondialdehyde concentration and ion leakage as a measure of cell membrane stability (CMS) increased in VIGS plants under drought and salt stress conditions. CONCLUSION: This study revealed the significance of the GH3 genes in enabling the plant's adaptation to drought and salt stress conditions as evidenced by the VIGS results and RT-qPCR analysis.


Assuntos
Secas , Gossypium/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/classificação , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA