Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 256(3): 54, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927530

RESUMO

MAIN CONCLUSION: For the first time it is reported that members of the nsLTP protein family could promote viral infection by inhibiting virus-induced RNA silencing. Non-specific lipid transfer proteins (nsLTPs) are a class of soluble proteins with low relative molecular weight and widely present in higher plants. The role of nsLTPs in biotic and abiotic stresses has been studied, but no report has shown that nsLTPs play a role in the process of viral infection. We report the function and mechanism of the classical nsLTP protein StLTP6 in viral infection. We found that StLTP6 expression was remarkably upregulated in potato infected with potato virus Y and potato virus S. The infection efficiency and virus content of StLTP6-overexpressed potato and Nicotiana benthamiana were remarkable increased. Further study found that the overexpression of StLTP6 inhibited the expression of multiple genes in the RNA silencing pathway, thereby inhibiting virus-induced RNA silencing. This result indicated that StLTP6 expression was induced during viral infection to inhibit the resistance of virus-induced RNA silencing and promote viral infection. In summary, we reported the role of StLTP6 in viral infection, broadening the biological function range of the nsLTP family and providing valuable information for the study of viral infection mechanism.


Assuntos
Solanum tuberosum , Viroses , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Doenças das Plantas/genética , Interferência de RNA , Solanum tuberosum/metabolismo , Viroses/genética
2.
Plant Cell Rep ; 41(1): 249-261, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697685

RESUMO

KEY MESSAGE: WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses. The previous study revealed that NtLTP4 positively regulates salt and drought stresses in Nicotiana tabacum. However, the role of NtLTP4 in biotic stress, especially regarding its function in disease resistance remains unclear. Here, the critical role of NtLTP4 in regulating resistance to Ralstonia solanacearum (R. solanacearum), a causal agent of bacterial wilt disease in tobacco, was reported. The NtLTP4-overexpressing lines markedly improved the resistance to R. solanacearum by upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure. Moreover, NtLTP4 interacted with wound-induced protein kinase (WIPK; a homolog of MAPK3 in tobacco) and acted in a genetically epistatic manner to WIPK in planta. WIPK could directly phosphorylate NtLTP4 to positively regulate its protein abundance. Taken together, these results broaden the knowledge about the functions of the WIPK-NtLTP4 module in disease resistance and may provide valuable information for improving tobacco plant tolerance to R. solanacearum.


Assuntos
Proteínas de Transporte/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Nicotiana/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ralstonia solanacearum/fisiologia , Proteínas de Transporte/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Nicotiana/microbiologia
3.
J Exp Bot ; 72(8): 3249-3262, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544818

RESUMO

Xa1-mediated resistance to rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is triggered by transcription activator-like effectors (TALEs) and suppressed by interfering TALEs (iTALEs). TALEs interact with the rice transcription factor OsTFIIAγ1 or OsTFIIAγ5 (Xa5) to activate expression of target resistance and/or susceptibility genes. However, it is not clear whether OsTFIIAγ is involved in TALE-triggered and iTALE-suppressed Xa1-mediated resistance. In this study, genome-edited mutations in OsTFIIAγ5 or OsTFIIAγ1 of Xa1-containing rice 'IRBB1' and Xa1-transgenic plants of xa5-containing rice 'IRBB5' did not impair the activation or suppression of Xa1-mediated resistance. Correspondingly, the expression pattern of Xa1 in mutated OsTFIIAγ5 and OsTFIIAγ1 rice lines and 'IRBB1' rice was similar. In contrast, the expression of OsSWEET11 was repressed in rice lines mutated in OsTFIIAγ5 and OsTFIIAγ1. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation assays showed that both TALE PthXo1 and iTALE Tal3a interacted with OsTFIIAγ1 and OsTFIIAγ5 in plant nuclei. These results indicated that TALE-triggered and iTALE-suppressed Xa1-mediated resistance to bacterial blight is independent of OsTFIIAγ1 or OsTFIIAγ5 in rice, and suggest that an unknown factor is potentially involved in the interaction of Xa1, TALEs and iTALEs.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas/microbiologia , Fatores de Transcrição , Xanthomonas , Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
4.
BMC Plant Biol ; 20(1): 169, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293278

RESUMO

BACKGROUND: Plant viruses cause severe economic losses in agricultural production. An ultrahigh activity plant immune inducer (i.e., ZhiNengCong, ZNC) was extracted from endophytic fungi, and it could promote plant growth and enhance resistance to bacteria. However, the antiviral function has not been studied. Our study aims to evaluate the antiviral molecular mechanisms of ZNC in tobacco. RESULTS: Here, we used Potato X virus (PVX), wild-type tobacco and NahG transgenic tobacco as materials to study the resistance of ZNC to virus. ZNC exhibited a high activity in enhancing resistance to viruses and showed optimal use concentration at 100-150 ng/mL. ZNC also induced reactive oxygen species accumulation, increased salicylic acid (SA) content by upregulating the expression of phenylalanine ammonia lyase (PAL) gene and activated SA signaling pathway. We generated transcriptome profiles from ZNC-treated seedlings using RNA sequencing. The first GO term in biological process was positive regulation of post-transcriptional gene silencing, and the subsequent results showed that ZNC promoted RNA silencing. ZNC-sprayed wild-type leaves showed decreased infection areas, whereas ZNC failed to induce a protective effect against PVX in NahG leaves. CONCLUSION: All results indicate that ZNC is an ultrahigh-activity immune inducer, and it could enhance tobacco resistance to PVX at low concentration by positively regulating the RNA silencing via SA pathway. The antiviral mechanism of ZNC was first revealed in this study, and this study provides a new antiviral bioagent.


Assuntos
Agentes de Controle Biológico/farmacologia , Nicotiana/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Potexvirus/imunologia , Interferência de RNA , Agentes de Controle Biológico/isolamento & purificação , Endófitos/química , Fungos/química , Regulação da Expressão Gênica de Plantas , Fenilalanina Amônia-Liase/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Ácido Salicílico , Nicotiana/imunologia , Nicotiana/virologia
5.
Planta ; 252(4): 57, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955625

RESUMO

MAIN CONCLUSION: Specific and common genes including transcription factors, resistance genes and pathways were significantly induced in potato by Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y infection. The three major pathogens, namely, Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y, can cause late blight, bacterial wilt, and necrotic ringspot, respectively, and thus severely reduce the yield and quality of potatoes (Solanum tuberosum L.). This study was the first to systematically analyze the relationship between transcriptome alterations in potato infected by these pathogens at the early stages. A total of 75,500 unigenes were identified, and 44,008 were annotated into 5 databases, namely, non-redundant (NR), Swiss-Prot protein, clusters of orthologous groups for eukaryotic complete genomes (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 6945 resistance genes and 11,878 transcription factors (TFs) were identified from all transcriptome data. Differential expression analysis revealed that 13,032 (9490 specifics), 9877 (6423 specifics), and 6661 (4144 specifics) differentially expressed genes (DEGs) were generated from comparisons of the P. infestans/control (Pi vs. Pi-CK), R. solanacearum/control (Rs vs. Rs-CK), and PVY/control (PVY vs. PVY-CK) treatments, respectively. The specific DEGs from the 3 comparisons were assigned to 13 common pathways, such as biosynthesis of amino acids, plant hormone signal transduction, carbon metabolism, and starch and sucrose metabolism. Weighted Gene Co-Expression Network Analysis (WGCNA) identified many hub unigenes, of which several unigenes were reported to regulate plant immune responses, such as FLAGELLIN-SENSITIVE 2 and chitinases. The present study provide crucial systems-level insights into the relationship between transcriptome changes in potato infected with the three pathogens. Moreover, this study presents a theoretical basis for breeding broad-spectrum and specific pathogen-resistant cultivars.


Assuntos
Interações Hospedeiro-Patógeno , Phytophthora infestans , Potyvirus , Ralstonia solanacearum , Solanum tuberosum , Transcriptoma , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Phytophthora infestans/fisiologia , Melhoramento Vegetal , Potyvirus/fisiologia , Ralstonia solanacearum/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum tuberosum/parasitologia , Solanum tuberosum/virologia
6.
Plant J ; 94(4): 612-625, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29495079

RESUMO

Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.


Assuntos
Adaptação Fisiológica , Calcineurina/metabolismo , Cálcio/metabolismo , Oryza/genética , Regiões Promotoras Genéticas/genética , Calcineurina/genética , Ecótipo , Inundações , Variação Genética , Germinação , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/fisiologia , Especificidade da Espécie , Estresse Fisiológico
7.
Planta ; 249(6): 1811-1822, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30840177

RESUMO

MAIN CONCLUSION: This study shows that NgRBP suppresses both local and systemic RNA silencing induced by sense- or double-stranded RNA, and the RNA binding activity is essential for its function. To counteract host defence, many plant viruses encode viral suppressors of RNA silencing targeting various stages of RNA silencing. There is increasing evidence that the plants also encode endogenous suppressors of RNA silencing (ESR) to regulate this pathway. In this study, using Agrobacterium infiltration assays, we characterized NgRBP, a glycine-rich RNA-binding protein from Nicotiana glutinosa, as an ESR. Our results indicated that NgRBP suppressed both local and systemic RNA silencing induced by sense- or double-stranded RNA. We also demonstrated that NgRBP could promote Potato Virus X (PVX) infection in N. benthamiana. NgRBP knockdown by virus-induced gene silencing enhanced PVX and Cucumber mosaic virus resistance in N. glutinosa. RNA immunoprecipitation and electrophoretic mobility shift assays showed that NgRBP bound to GFP mRNA, dsRNA rather than siRNA. These findings provide the evidence that NgRBP acts as an ESR and the RNA affinity of NgRBP plays the key role in its ESR activity. NgRBP responds to multiple signals such as ABA, MeJA, SA, and Tobacco mosaic virus infection. Therefore, it could participate in the regulation of gene expression under specific conditions.


Assuntos
Nicotiana/genética , Doenças das Plantas/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Agrobacterium , Sequência de Aminoácidos , Arginina , Cucumovirus/fisiologia , Genes Reporter , Filogenia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Nicotiana/virologia , Vírus do Mosaico do Tabaco/fisiologia
8.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234322

RESUMO

Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.


Assuntos
Peptídeos/imunologia , Phytophthora infestans/imunologia , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , Fatores de Virulência/imunologia , Interações Hospedeiro-Parasita , Phytophthora infestans/fisiologia , Doenças das Plantas/parasitologia , Imunidade Vegetal , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/parasitologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/parasitologia
9.
Arch Virol ; 163(11): 3073-3081, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30097746

RESUMO

In plants, viral replication can be inhibited through gene silencing, which is mediated by short interfering RNA (siRNA) or microRNA (miRNA). However, under natural conditions, viruses are extremely susceptible to mutations that may decrease the efficiency of cleavage of these small RNAs (sRNAs). Therefore, a single sRNA may not provide a sufficient degree of viral resistance to transgenic plants. Potato virus Y necrotic strain (PVYN) and Potato virus Y common strain (PVYO) are the two major PVY strains that cause systemic necrosis and mottling, respectively, in tobacco. In this study, we designed specific siRNAs and miRNAs to target two regions of the PVYO replicase gene (NIb). Eight plant expression vectors containing one or two sRNAs were constructed. Luciferase activity assays showed that the designed sRNAs successfully cleaved the NIb gene of PVYO and PVYN, and the vector carrying a combined siRNA- and miRNA-based short hairpin RNA (shRNA) demonstrated the strongest inhibitory effect. These effects were confirmed through the acquisition of PVYO and PVYN resistance in transgenic sRNA-expressing Nicotiana tabacum plants. This phenomenon could be related to a plant defense mechanism in which siRNA and miRNA pathways are complementary and interact to achieve gene silencing. Furthermore, there is a tendency for the homologous small RNA sequences (PVYO) to be more effective in conferring resistance than those with imperfect homology (PVYN). Overall, these findings confirm that the use of a combined siRNA- and miRNA-based shRNAs is a promising approach for introducing viral resistance to plants through genetic engineering.


Assuntos
MicroRNAs/genética , Doenças das Plantas/virologia , Potyvirus/genética , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , Solanum tuberosum/virologia , Proteínas Virais/genética , Replicação Viral , MicroRNAs/metabolismo , Doenças das Plantas/imunologia , Potyvirus/enzimologia , Potyvirus/fisiologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Solanum tuberosum/imunologia , Nicotiana/imunologia , Nicotiana/virologia , Proteínas Virais/metabolismo
10.
Arch Virol ; 163(1): 167-174, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29052787

RESUMO

HVT063, an RNA-binding protein encoded by turkey herpesvirus, has been shown previously to suppress RNA silencing. Here, a scanning library produced by pentapeptide-insertion scanning mutagenesis was used to identify key residues associated with its RNA silencing suppressor (RSS) activity. Forty-two in-frame insertion mutants of HVT063 protein were evaluated for their RSS activity using the dual-luciferase transient expressing assay system. Sixteen mutations resulted in a loss of RSS activity, 20 mutations resulted in decreased RSS activity, and six mutations exhibited high RSS activity similar to wild-type HVT063. Based on a three-dimensional structure prediction, most of the loss-of-function mutations were located around a predominantly α-helical region at the C-terminal end of HVT063. In particular, a conserved domain in this region, named herpes_UL69, showed low tolerance for five-amino-acid insertions. Combined with the results of our previous studies, basic amino acids could play a key role in RSS activity. These results also demonstrate that pentapeptide-insertion scanning mutagenesis combined with dual-luciferase assays is an effective method to functionally characterize RSSs.


Assuntos
Herpesvirus Meleagrídeo 1/genética , Interferência de RNA , Sequência de Aminoácidos , Animais , Regulação Viral da Expressão Gênica , Herpesvirus Meleagrídeo 1/classificação , Mutagênese Insercional , Mutação , Plantas Geneticamente Modificadas , Nicotiana/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Virus Genes ; 54(3): 368-375, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29480423

RESUMO

Non-structural protein 1 (NS1) of influenza A virus is a multifunctional dimeric protein that contains a conserved N-terminal RNA binding domain. Studies have shown that NS1 suppresses RNA silencing and the NS1 proteins encoded by different influenza A virus strains exhibit differential RNA silencing suppression activities. In this study, we showed that the NS1 protein from avian influenza virus (AIV) H9N2 suppressed systemic RNA silencing induced by sense RNA or dsRNA. It resulted in more severe Potato virus X symptom, but could not reverse established systemic green fluorescent protein silencing in Nicotiana benthamiana. In addition, its systemic silencing suppression activity was much weaker than that of p19. The local silencing suppression activity of AIV H9N2 NS1 was most powerful at 7 dpi and was even stronger than that of p19. And the inhibition ability to RNA silencing of NS1 is stronger than that of p19 in human cells. Collectively, these results indicate that AIV H9N2 NS1 is an effective RNA silencing suppressor that likely targets downstream step(s) of dsRNA formation at an early stage in RNA silencing. Although NS1 and p19 both bind siRNA, their suppression mechanisms seem to differ because of differences in their suppression activities at various times post-infiltration and because p19 can reverse established systemic RNA silencing, but NS1 cannot.


Assuntos
Vírus da Influenza A Subtipo H9N2/fisiologia , Interferência de RNA , Tombusvirus/fisiologia , Proteínas não Estruturais Virais/fisiologia , Agrobacterium/genética , DNA Viral , Proteínas de Fluorescência Verde/genética , Vírus da Influenza A Subtipo H9N2/genética , Plantas Geneticamente Modificadas , RNA de Cadeia Dupla , Análise de Sequência de DNA , Nicotiana , Proteínas não Estruturais Virais/genética , Proteínas Virais/fisiologia
12.
J Gen Virol ; 96(Pt 7): 1613-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25701825

RESUMO

Non-structural protein 1 (NS1) binds small interfering RNA and suppresses RNA silencing in plants, but the underlying mechanism of this suppression is not well understood. Therefore, here we characterized NS1 encoded by the avian influenza virus H9N2. The NS1 protein was able to suppress RNA silencing induced by either sense RNA or double-stranded RNA (dsRNA). Using deletion and point mutants, we discovered that the first 70 residues of NS1 could suppress RNA silencing triggered by sense transgene, but this sequence was not sufficient to block dsRNA-induced silencing. Any mutations of two arginine residues (35R and 46R) of NS1, which contribute to its homodimeric structure, caused the loss of its silencing suppression activity. These results indicate that the region after residue 70 of NS1 is essential for the repression activity on dsRNA-induced RNA silencing, and that the dimeric structure of NS1 plays a critical role in its RNA silencing suppression function.


Assuntos
Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Interferência de RNA , Proteínas não Estruturais Virais/metabolismo , Animais , Galinhas , Análise Mutacional de DNA , Regulação da Expressão Gênica , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , RNA Interferente Pequeno/metabolismo , Deleção de Sequência , Nicotiana/genética , Nicotiana/metabolismo , Proteínas não Estruturais Virais/genética
13.
Front Plant Sci ; 15: 1338062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504894

RESUMO

Late blight, caused by Phytophthora infestans, is one of the most serious diseases affecting potatoes (Solanum tuberosum L.). Long non-coding RNAs (lncRNAs) are transcripts with a length of more than 200 nucleotides that have no protein-coding potential. Few studies have been conducted on lncRNAs related to plant immune regulation in plants, and the molecular mechanisms involved in this regulation require further investigation. We identified and screened an lncRNA that specifically responds to P. infestans infection, namely, StlncRNA13558. P. infestans infection activates the abscisic acid (ABA) pathway, and ABA induces StlncRNA13558 to enhance potato resistance to P. infestans. StlncRNA13558 positively regulates the expression of its co-expressed PR-related gene StPRL. StPRL promotes the accumulation of reactive oxygen species and transmits a resistance response by affecting the salicylic acid hormone pathway, thereby enhancing potato resistance to P. infestans. In summary, we identified the potato late blight resistance lncRNA StlncRNA13558 and revealed its upstream and downstream regulatory relationship of StlncRNA13558. These results improve our understanding of plant-pathogen interactions' immune mechanism and elucidate the response mechanism of lncRNA-target genes regulating potato resistance to P. infestans infection.

14.
Mol Plant Pathol ; 24(5): 425-435, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828802

RESUMO

Tomato chlorosis virus (ToCV) is a member of the genus Crinivirus in the family Closteroviridae. It has a wide host range and wide distribution, causing serious harm to the vegetable industry. The autophagy pathway plays an important role in plant resistance to virus infection. Viruses and plant hosts coevolve in defence and antidefence processes around autophagy. In this study, the interaction between ToCV p22 and Nicotiana benthamiana B-cell lymphoma2-associated athanogenes5 Nicotiana benthamiana (NbBAG5) was examined. Through overexpression and down-regulation of NbBAG5, results showed that NbBAG5 could negatively regulate ToCV infection. NbBAG5 was found to be localized in mitochondria and can change the original localization of ToCV p22, which is colocalized in mitochondria. NbBAG5 inhibited the expression of mitophagy-related genes and the number of autophagosomes, thereby regulating viral infection by affecting mitophagy. In summary, this study demonstrated that ToCV p22 affects autophagy by interacting with NbBAG5, established the association between viral infection, BAG proteins family, and the autophagy pathway, and explained the molecular mechanism by which ToCV p22 interacts with NbBAG5 to inhibit autophagy to regulate viral infection.


Assuntos
Crinivirus , Nicotiana , Proteínas de Plantas , Proteínas Virais , Autofagia , Crinivirus/metabolismo , Doenças das Plantas , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo
15.
Viruses ; 15(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112970

RESUMO

Tomato chlorosis virus (ToCV) severely threatens tomato production worldwide. P27 is known to be involved in virion assembly, but its other roles in ToCV infection are unclear. In this study, we found that removal of p27 reduced systemic infection, while ectopic expression of p27 promoted systemic infection of potato virus X in Nicotiana benthamiana. We determined that Solanum lycopersicum catalases (SlCAT) can interact with p27 in vitro and in vivo and that amino acids 73 to 77 of the N-terminus of SlCAT represent the critical region for their interaction. p27 is distributed in the cytoplasm and nucleus, and its coexpression with SlCAT1 or SlCAT2 changes its distribution in the nucleus. Furthermore, we found that silencing of SlCAT1 and SlCAT2 can promote ToCV infection. In conclusion, p27 can promote viral infection by binding directly to inhibit anti-ToCV processes mediated by SlCAT1 or SlCAT2.


Assuntos
Crinivirus , Solanum lycopersicum , Catalase , Crinivirus/genética , Doenças das Plantas , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
J Adv Res ; 46: 1-15, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35811061

RESUMO

INTRODUCTION: Beneficial microorganisms play essential roles in plant growth and induced systemic resistance (ISR) by releasing signaling molecules. Our previous study obtained the crude extract from beneficial endophyte Paecilomyces variotii, termed ZNC (ZhiNengCong), which significantly enhanced plant resistance to pathogen even at 100 ng/ml. However, the immunoreactive components of ZNC remain unclear. Here, we further identified one of the immunoreactive components of ZNC is a nucleoside 2'-deoxyguanosine (2-dG). OBJECTIVES: This paper intends to reveal the molecular mechanism of microbial-derived 2'-deoxyguanosine (2-dG) in activating plant immunity, and the role of plant-derived 2-dG in plant immunity. METHODS: The components of ZNC were separated using a high-performance liquid chromatography (HPLC), and 2-dG is identified using a HPLC-mass spectrometry system (LC-MS). Transcriptome analysis and genetic experiments were used to reveal the immune signaling pathway dependent on 2-dG activation of plant immunity. RESULTS: This study identified 2'-deoxyguanosine (2-dG) as one of the immunoreactive components from ZNC. And 2-dG significantly enhanced plant pathogen resistance even at 10 ng/ml (37.42 nM). Furthermore, 2-dG-induced resistance depends on NPR1, pattern-recognition receptors/coreceptors, ATP receptor P2K1 (DORN1), ethylene signaling but not salicylic acid accumulation. In addition, we identified Arabidopsis VENOSA4 (VEN4) was involved in 2-dG biosynthesis and could convert dGTP to 2-dG, and vne4 mutant plants were more susceptible to pathogens. CONCLUSION: In summary, microbial-derived 2-dG may act as a novel immune signaling molecule involved in plant-microorganism interactions, and VEN4 is 2-dG biosynthesis gene and plays a key role in plant immunity.


Assuntos
Arabidopsis , Nucleosídeos , Plantas , Arabidopsis/genética , Transdução de Sinais , Desoxiguanosina
17.
Pest Manag Sci ; 78(7): 2940-2951, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35439336

RESUMO

BACKGROUND: Rice black-streaked dwarf virus (RBSDV) is transmitted by small brown planthopper (Laodelphax striatellus [L. striatellus]) and causes devastating disease in rice. P9-1 has silencing suppression activity and is the key protein for viroplasm formation in RBSDV-infected plants and insects; however, its exact function is poorly understood. RESULTS: In this study, the P9-1 of RBSDV interacted with L. striatellus 26S proteasome subunit RPN8. RBSDV accumulation in L. striatellus increased after the 26S proteasome was disrupted by silencing the RPN8 expression. This finding indicated that L. striatellus 26S proteasome played a defense role against RBSDV infection by regulating RBSDV accumulation. Further investigations revealed that P9-1 could competitively bind to RPN8 with RPN7, thereby disrupting the assembly of 26S proteasome in L. striatellus and promoting the infection of RBSDV in insect vectors, and further affecting the transmission of the virus to rice by insect vectors. Similar to P9-1, rice stripe virus (RSV) NS2, a weak silencing suppressor, regulated virus accumulation and transmission by hijacking RPN8 to interfere with the function of 26S proteasome in L. striatellus. CONCLUSION: These results suggest that viruses promote their own infection via interfering with ubiquitination pathway of insect vectors, and this mechanism might be of universal importance. These findings provide a new insight into the mechanism of virus transmission in insect vectors. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Vírus de Plantas , Reoviridae , Tenuivirus , Animais , Hemípteros/metabolismo , Oryza/genética , Doenças das Plantas , Vírus de Plantas/fisiologia , Complexo de Endopeptidases do Proteassoma , Reoviridae/genética , Tenuivirus/genética
18.
J Antibiot (Tokyo) ; 75(2): 117-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34845337

RESUMO

A new compound classified as one new azaphilone derivative, nigirpexin E (1), was obtained from the soil-derived fungus Trichoderma afroharzianum LTR-2, together with seven known compounds (2-8). The structures of 1-8 were determined by their HRESIMS, optical rotation, and NMR spectroscopic data. The absolute configuration of nigirpexin E (1) was determined on the basis of comparisons of experimental and theoretically calculated ECD spectra. Compound 3 was firstly isolated from Trichoderma. Bioactivities of the isolated compounds were assayed their anti-tobacco mosaic virus (anti-TMV) activities. The results showed that compound 1 exhibited significant inactivation effect against TMV with an inhibition rate of 67.25% (0.5 mg ml-1), which was higher than that of positive control ribavirin (56.74%). This is the first report of the anti-TMV activity of azaphilone derivatives.


Assuntos
Antivirais/farmacologia , Hypocreales/química , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Benzopiranos , Dicroísmo Circular , Fermentação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Pigmentos Biológicos , Ribavirina/farmacologia , Microbiologia do Solo
19.
Transgenic Res ; 20(6): 1367-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21533902

RESUMO

Rice stripe disease, with the pathogen Rice stripe virus (RSV), is one of the most widespread and severe virus diseases. Cultivating a resistant breed is an essential and efficient method in preventing rice stripe disease. Following RNA interference (RNAi) theory, we constructed three RNAi binary vectors based on coat protein (CP), special-disease protein (SP) and chimeric CP/SP gene sequence. Transgenic lines of rice cv. Yujing6 were generated through Agrobacterium-mediated transformation. We inoculated T1 generation plants from each line derived from CP/SP, CP, and SP transgenic rice plants with two RSV isolates from Shandong Province and Jiangsu Province using viruliferous vector insects. In these resistance assays, chimeric CP/SP RNAi lines showed stronger resistance against two isolates than CP or SP single RNAi lines. Stable integration and expression of RNAi transgenes were confirmed by Southern and northern blot analysis of independent transgenic lines. In the resistant transgenic lines, lower levels of transgene transcripts and specific short interference RNAs were observed relative to the susceptible transgenic plant, which showed that virus resistance was increased by RNAi. Genetic analysis demonstrated that transgene and virus resistance was stably inherited in the T2 progeny plants.


Assuntos
Resistência à Doença , Oryza/genética , Oryza/virologia , Doenças das Plantas/genética , Tenuivirus/patogenicidade , Agrobacterium/genética , Agrobacterium/metabolismo , Animais , Northern Blotting , Southern Blotting , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Genes Virais , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Hemípteros/virologia , Padrões de Herança , Oryza/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo , Tenuivirus/genética , Tenuivirus/imunologia
20.
Mol Biol Rep ; 38(2): 929-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20495874

RESUMO

RNA-dependent RNA polymerases (RDRs) play an important role in RNA silencing, antiviral and developmental progress. Here, we firstly isolated the full-length cDNA, genomic DNA and 5'-flanking region of RDR6 from Nicotiana glutinosa (NgRDR6). Sequences analysis revealed that the cDNA of NgRDR6 was 3,921 bp in length, and the deduced protein consisted of 1,197 amino acids, containing all highly conserved sequence motifs that are present among all RDRs families. Moreover, two introns were detected in the genomic sequences. We also firstly investigated the expression profiles of plant RDR6 under the treatments of gibberellin A (GA), H(2)O(2,) methyl jasmonate (MeJA), Potato virus Y (PVY), Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Rhizoctonia Solani and Colletotrichum nicotianae. In addition, the expression patterns of RDR6 in Nicotiana glutinosa under the treatments of salicylic acid (SA) and abscisic acid (ABA) were also been analyzed. The results indicated that the NgRDR6 mRNA accumulation could be induced by ABA, GA, MeJA, CMV, Rhizoctonia Solani and Colletotrichum nicotianae. In contrast, the expression level of NgRDR6 exhibited no remarkable difference under the treatments of PVY, TMV, H(2)O(2) and SA. Further investigation suggested several potential cis-acting elements were found in the 5'-flanking sequence of NgRDR6, which might be responsible for the enhanced response to phytohormones.


Assuntos
Proteínas de Arabidopsis/genética , Nicotiana/enzimologia , Nicotiana/genética , RNA Polimerase Dependente de RNA/genética , Acetatos/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Ciclopentanos/química , Primers do DNA/genética , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Giberelinas/química , Peróxido de Hidrogênio/química , Dados de Sequência Molecular , Oxilipinas/química , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA