Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(8): e2217150120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791101

RESUMO

We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the "smectic ZA," is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole-dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic-SmZA-ferroelectric nematic phase sequence.

2.
J Am Chem Soc ; 145(51): 28191-28203, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091467

RESUMO

We demonstrate the effective establishment of long-range electrostatic interactions among colloidal silica nanospheres through acid treatment, enabling their assembly into colloidal crystals at remarkably low concentrations. This novel method overcomes the conventional limitation in colloidal silica assembly by removing entrapped NH4+ ions and enhancing the electrical double layer (EDL) thickness, offering a time-efficient alternative to increase electrostatic interactions compared with methods like dialysis. The increased EDL thickness facilitates the assembly of SiO2 nanospheres into a body-centered-cubic lattice structure at low particle concentrations, allowing for broad spectrum tunability and high tolerance to particle size polydispersity. Further, we uncover a disorder-order transition during colloidal crystallization at low particle concentrations, with the optimal concentration for crystal formation governed by both thermodynamic and kinetic factors. This work not only provides insights into assembly mechanisms but also paves the way for the design and functionalization of colloidal silica-based photonic crystals in diverse applications.

3.
J Am Chem Soc ; 145(42): 22885-22889, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844128

RESUMO

Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.

4.
Appl Microbiol Biotechnol ; 107(13): 4369-4380, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37199749

RESUMO

Recombinant type III collagen plays an important role in cosmetics, wound healing, and tissue engineering. Thus, increasing its production is necessary. After an initial increase in output by modifying the signal peptide, we showed that adding 1% maltose directly to the medium increased the yield and reduced the degradation of recombinant type III collagen. We initially verified that Pichia pastoris GS115 can metabolize and utilize maltose. Interestingly, maltose metabolism-associated proteins in Pichia pastoris GS115 have not yet been identified. RNA sequencing and transmission electron microscopy were performed to clarify the specific mechanism of maltose influence. The results showed that maltose significantly improved the metabolism of methanol, thiamine, riboflavin, arginine, and proline. After adding maltose, the cell microstructures tended more toward the normal. Adding maltose also contributed to yeast homeostasis and methanol tolerance. Finally, adding maltose resulted in the downregulation of aspartic protease YPS1 and a decrease in yeast mortality, thereby slowing down recombinant type III collagen degradation. KEY POINTS: • Co-feeding of maltose improves recombinant type III collagen production. • Maltose incorporation enhances methanol metabolism and antioxidant capacity. • Maltose addition contributes to Pichia pastoris GS115 homeostasis.


Assuntos
Colágeno Tipo III , Proteínas de Saccharomyces cerevisiae , Proteínas Recombinantes/metabolismo , Colágeno Tipo III/química , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Maltose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sinais Direcionadores de Proteínas/genética , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(50): 31639-31647, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33262279

RESUMO

Hierarchical nanomaterials have received increasing interest for many applications. Here, we report a facile programmable strategy based on an embedded segmental crystallinity design to prepare unprecedented supramolecular planar nanobrush-like structures composed of two distinct molecular packing motifs, by the self-assembly of one particular diblock copolymer poly(ethylene glycol)-block-poly(N-octylglycine) in a one-pot preparation. We demonstrate that the superstructures result from the temperature-controlled hierarchical self-assembly of preformed spherical micelles by optimizing the crystallization-solvophobicity balance. Particularly remarkable is that these micelles first assemble into linear arrays at elevated temperatures, which, upon cooling, subsequently template further lateral, crystallization-driven assembly in a living manner. Addition of the diblock copolymer chains to the growing nanostructure occurs via a loosely organized micellar intermediate state, which undergoes an unfolding transition to the final crystalline state in the nanobrush. This assembly mechanism is distinct from previous crystallization-driven approaches which occur via unimer addition, and is more akin to protein crystallization. Interestingly, nanobrush formation is conserved over a variety of preparation pathways. The precise control ability over the superstructure, combined with the excellent biocompatibility of polypeptoids, offers great potential for nanomaterials inaccessible previously for a broad range of advanced applications.

6.
Nano Lett ; 22(11): 4569-4575, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584547

RESUMO

Here, we report the relationship between helical pitch of the helical nanofilament (HNF) phase formed by bent-core molecule NOBOW and the concentration of achiral dopants 5CB and octane, using linearly polarized resonant soft X-ray scattering (RSoXS). Utilizing theory-based simulation, which fits well with the experiments, the molecular helices in the filament were probed and the superstructure of helical 5CB directed by groove of HNFs was observed. Quantitative pitch determination with RSoXS reveals that helical pitch variation is related to 5CB concentration with no temperature dependence. Doping rodlike immiscible 5CB led to a pitch shortening of up to 30%, which was attributed to a change in interfacial tension. By shedding light not only on phase behavior of binary systems but also enabling control over pitch length, our work may benefit various applications of HNF-containing binary systems, including optical rotation devices, circularly polarized light emitters, and chirality transfer agents.


Assuntos
Cristais Líquidos , Simulação por Computador , Cristais Líquidos/química , Temperatura
7.
J Am Chem Soc ; 144(15): 6936-6945, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394276

RESUMO

Bicontinuous and multicontinuous network phases are among nature's most complex structures in soft matter systems. Here, a chiral bicontinuous tetragonal phase is reported as a new stable liquid crystalline intermediate phase at the transition between two cubic phases, the achiral double gyroid and the chiral triple network cubic phase with an I23 space group, both formed by dynamic networks of helices. The mirror symmetry of the double gyroid, representing a meso-structure of two enantiomorphic networks, is broken at the transition to this tetragonal phase by retaining uniform helicity only along one network while losing it along the other one. This leads to a conglomerate of enantiomorphic tetragonal space groups, P41212 and P43212. Phase structures and chirality were analyzed by small-angle X-ray scattering (SAXS), grazing-incidence small-angle X-ray scattering (GISAXS), resonant soft X-ray scattering (RSoXS) at the carbon K-edge, and model-dependent SAXS/RSoXS simulation. Our findings not only lead to a new bicontinuous network-type three-dimensional mesophase but also reveal a mechanism of mirror symmetry breaking in soft matter by partial meso-structure racemization at the transition from enantiophilic to enantiophobic interhelical self-assembly.

8.
J Am Chem Soc ; 144(4): 1539-1544, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35068156

RESUMO

Two entangled 2D square covalent organic frameworks (COFs) have been synthesized from 4,4',4″,4‴-(9,9'-spirobi[fluorene]-2,2',7,7'-tetrayl)-tetrabenzaldehhyde (SFTB) and p-phenylenediamine (PPA) and benzidine (BZD) to form COF-38, [(SFTB)(PPA)2]imine, and its isoreticular form COF-39, [(SFTB)(BZD)2]imine. We also report the single-crystal electron diffraction structure of COF-39 and find that it is composed of mutually entangled 2D square nets (sql). These COFs represent the first examples of entangled 2D COF structures, which, as we illustrate, were made possible by our strategy of using the distorted tetrahedral SFTB building unit. SFTB overcomes the propensity of 2D COFs to stack through π-π stacking and allows entanglements to form. This work significantly adds to the design principles of COFs.

9.
Small ; 18(18): e2200165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35373522

RESUMO

Diabetic wound healing remains challenging owing to the risk for bacterial infection, hypoxia, excessive glucose levels, and oxidative stress. Glucose-activated cascade reactions can consume glucose and eradicate bacteria, avoiding the direct use of hydrogen peroxide (H2 O2 ) and wound pH restriction on peroxidase-like activity. However, the anoxic microenvironment in diabetic wounds impedes the cascade reaction due to the oxygen (O2 ) dependence of glucose oxidation. Herein, defect-rich molybdenum disulfide nanosheets loaded with bovine serum albumin-modified gold nanoparticle (MoS2 @Au@BSA NSs) heterostructures are designed and anchored onto injectable hydrogels to promote diabetic wound healing through an O2 self-supplying cascade reaction. BSA decoration decreases the particle size of Au, increasing the activity of multiple enzymes. Glucose oxidase-like Au catalyzes the oxidation of glucose into gluconic acid and H2 O2 , which is transformed into a hydroxyl radical (•OH) catalyzed by peroxidase-like MoS2 @Au@BSA to eradicate bacteria. When the wound pH reaches an alkalescent condition, MoS2 @Au@BSA mimicks superoxide dismutase to transform superoxide anions into O2 and H2 O2 , and decomposes endogenous and exogenous H2 O2 into O2 via catalase-like mechanisms, reducing oxidative stress, alleviating hypoxia, and facilitating glucose oxidation. The MoS2 @Au@BSA nanozyme-anchored injectable hydrogel, composed of oxidized dextran and glycol chitosan crosslinked through a Schiff base, significantly accelerates diabetic wound healing.


Assuntos
Diabetes Mellitus , Nanopartículas Metálicas , Antioxidantes , Bactérias , Glucose , Ouro , Humanos , Hidrogéis , Hipóxia , Molibdênio , Oxigênio , Peroxidases , Cicatrização
10.
Crit Rev Food Sci Nutr ; : 1-23, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959724

RESUMO

Gels refer to the soft and flexible macromolecular polymeric materials retaining a large amount of water or biofluids in their three-dimensional network structure. Gels have attracted increasing interest in the food discipline, especially proteins and polysaccharides, due to their good biocompatibility, biodegradability, nutritional properties, and edibility. With the advancement of living standards, people's demand for nutritious, safe, reliable, and functionally diverse food and even personalized food has increased. As a result, gels exhibiting unique advantages in food application will be of great significance. However, a comprehensive review of functional hydrogels as food gels is still lacking. Here, we comprehensively review the gel-forming mechanisms of food gels and systematically classify them. Moreover, the potential of hydrogels as functional foods in different types of food areas is summarized, with a special focus on their applications in food packaging, satiating gels, nutrient delivery systems, food coloring adsorption, and food safety monitoring. Additionally, the key scientific issues for future food gel research, with specific reference to future novel food designs, mechanisms between food components and matrices, food gel-human interactions, and food gel safety, are discussed. Finally, the future directions of hydrogels for food science and technology are summarized.

11.
Soft Matter ; 18(42): 8194-8200, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269084

RESUMO

A resonant X-ray scattering response for two structural models of a chiral cubic phase with a giant unit cell, one composed of a continuous grid and micelles and the other with three continuous grids, is studied theoretically and compared to experimental measurements. For both structural models resonant enhancement of all the symmetry-allowed diffraction peaks is predicted, as well as the existance of several symmetry forbidden peaks (pure resonant peaks). Experimental measurements were performed at the carbon and sulphur absorption edge. Only one pure resonant peak was observed, which is predicted by both models. Two low-angle symmetry allowed peaks, not observed in non-resonant scattering, were resonantly enhanced and their intensity angular dependence can distinguish between the two structural models.

12.
Phys Chem Chem Phys ; 24(42): 26102-26110, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274571

RESUMO

Nucleation and crystallization arising from liquid to solid phase are involved in a multitude of processes in fields ranging from materials science to biology. Controlling the thermodynamics and kinetics of growth is advantageous to help tune the formation of complex morphologies. Here, we harness wide-angle X-ray scattering and vibrational spectroscopy to elucidate the mechanism for crystallization and growth of the metal-organic framework Co-MOF-74 within microscopic volumes enclosed in a capillary and an attenuated total reflection microchip reactor. The experiments reveal molecular and structural details of the growth processes, while the results of plane wave density functional calculations allow identification of lattice and linker modes in the formed crystals. Synthesis of the metal-organic framework with microscopic volumes leads to monodisperse and micron-sized crystals, in contrast to those typically observed under bulk reaction conditions. Reduction in the volume of reagents within the microchip reactor was found to accelerate the reaction rate. The coupling of spectroscopy with scattering to probe reactions in microscopic volumes promises to be a useful tool in the synthetic chemist's kit to understand chemical bonding and has potential in designing complex materials.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Raios X , Cristalização , Termodinâmica , Espectroscopia de Ressonância Magnética
13.
J Phys Chem A ; 126(19): 3015-3026, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35522242

RESUMO

We have developed a strategy for distinguishing between small-angle X-ray scattering (SAXS) from gas-phase species and newly formed nanoparticles in mixed gas- and particle-phase reacting flows. This methodology explicitly accounts for temperature-dependent scattering from gases. We measured SAXS in situ in a sooting linear laminar partially premixed co-flow ethylene/air diffusion flame. The scattering signal demonstrates a downward curvature as a function of the momentum transfer (q) at q values of 0.2-0.57 Å-1. The q-dependent curvature is consistent with the Debye equation and the independent-atom model for gas-phase scattering. This behavior can also be modeled using the Guinier approximation and could be characterized as a Guinier knee for gas-phase scattering. The Guinier functional form can be fit to the scattering signal in this q range without a priori knowledge of the gas-phase composition, enabling estimation of the gas-phase contribution to the scattering signal while accounting for changes in the gas-phase composition and temperature. We coupled the SAXS measurements with in situ temperature measurements using coherent anti-Stokes Raman spectroscopy. This approach to characterizing the gas-phase SAXS signal provides a physical basis for distinguishing among the contributions to the scattering signal from the instrument function, flame gases, and nanoparticles. The results are particularly important for the analysis of the SAXS signal in the q range associated with particles in the size range of 1-6 nm.

14.
Proc Natl Acad Sci U S A ; 116(22): 10698-10704, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31088967

RESUMO

We synthesized the liquid crystal dimer and trimer members of a series of flexible linear oligomers and characterized their microscopic and nanoscopic properties using resonant soft X-ray scattering and a number of other experimental techniques. On the microscopic scale, the twist-bend phases of the dimer and trimer appear essentially identical. However, while the liquid crystal dimer exhibits a temperature-dependent variation of its twist-bend helical pitch varying from 100 to 170 Å on heating, the trimer exhibits an essentially temperature-independent pitch of 66 Å, significantly shorter than those reported for other twist-bend forming materials in the literature. We attribute this to a specific combination of intrinsic conformational bend of the trimer molecules and a sterically favorable intercalation of the trimers over a commensurate fraction (two-thirds) of the molecular length. We develop a geometric model of the twist-bend phase for these materials with the molecules arranging into helical chain structures, and we fully determine their respective geometric parameters.

15.
Nano Lett ; 21(12): 5053-5059, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101469

RESUMO

Polymer-inorganic nanocomposites based on polymer-grafted nanocrystals (PGNCs) are enabling technologically relevant applications owing to their unique physical, chemical, and mechanical properties. While diverse PGNC superstructures have been realized through evaporation-driven self-assembly, this approach presents multifaceted challenges in experimentally probing and controlling assembly kinetics. Here, we report a kinetically controlled assembly of binary superstructures from a homogeneous disordered PGNC mixture utilizing solvent vapor annealing (SVA). Using a NaZn13-type superstructure as a model system, we demonstrate that varying the solvent vapor pressure during SVA allows for exquisite control of the rate and extent of PGNC assembly, providing access to nearly complete kinetic pathways of binary PGNC crystallization. Characterization of kinetically arrested intermediates reveals that assembly follows a multistep crystallization pathway involving spinodal-like preordering of PGNCs prior to NaZn13 nucleation. Our work opens up new avenues for the synthesis of multicomponent PGNC superstructures exhibiting multifunctionalities and emergent properties through a thorough understanding of kinetic pathways.

16.
J Am Chem Soc ; 143(37): 15215-15223, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516736

RESUMO

Controlling grain growth is of great importance in maximizing the charge carrier transport for polycrystalline thin-film electronic devices. The thin-film growth of halide perovskite materials has been manipulated via a number of approaches including solvent engineering, composition engineering, and post-treatment processes. However, none of these methods lead to large-scale atomically flat thin films with extremely large grain size and high charge carrier mobility. Here, we demonstrate a novel π-conjugated ligand design approach for controlling the thin-film nucleation and growth kinetics in two-dimensional (2D) halide perovskites. By extending the π-conjugation and increasing the planarity of the semiconducting ligand, nucleation density can be decreased by more than 5 orders of magnitude. As a result, wafer-scale 2D perovskite thin films with highly ordered crystalline structures and extremely large grain size are readily obtained. We demonstrate high-performance field-effect transistors with hole mobility approaching 10 cm2 V-1 s-1 with ON/OFF current ratios of ∼106 and excellent stability and reproducibility. Our modeling analysis further confirms the origin of enhanced charge transport and field and temperature dependence of the observed mobility, which allows for clear deciphering of the structure-property relationships in these nascent 2D semiconductor systems.

17.
Proc Natl Acad Sci U S A ; 115(38): 9373-9378, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29572428

RESUMO

In situ grazing-incidence X-ray scattering shows that a monolayer of artificial rod-shaped dipolar molecular rotors produced on the surface of an aqueous subphase in a Langmuir trough has a structure conducive to a 2D ferroelectric phase. The axes of the rotors stand an average of 0.83 nm apart in a triangular grid, perpendicular to the surface within experimental error. They carry 2,3-dichlorophenylene rotators near rod centers, between two decks of interlocked triptycenes installed axially on the rotor axle. The analysis is based first on simultaneous fitting of observed Bragg rods and second on fitting the reflectivity curve with only three adjustable parameters and the calculated rotor electron density, which also revealed the presence of about seven molecules of water near each rotator. Dependent on preparation conditions, a minor and variable amount of a different crystal phase may also be present in the monolayer.

18.
Proc Natl Acad Sci U S A ; 115(33): E7658-E7664, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29967169

RESUMO

We demonstrate that nucleic acid (NA) mononucleotide triphosphates (dNTPs and rNTPs), at sufficiently high concentration and low temperature in aqueous solution, can exhibit a phase transition in which chromonic columnar liquid crystal ordering spontaneously appears. Remarkably, this polymer-free state exhibits, in a self-assembly of NA monomers, the key structural elements of biological nucleic acids, including: long-ranged duplex stacking of base pairs, complementarity-dependent partitioning of molecules, and Watson-Crick selectivity, such that, among all solutions of adenosine, cytosine, guanine, and thymine NTPs and their binary mixtures, duplex columnar ordering is most stable in the A-T and C-G combinations.


Assuntos
Conformação de Ácido Nucleico , Ligação de Hidrogênio , Cristais Líquidos , Difração de Raios X
19.
Angew Chem Int Ed Engl ; 60(15): 8337-8343, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33497510

RESUMO

Metal halide perovskites are promising for applications in light-emitting diodes (LEDs), but still suffer from defects-mediated nonradiative losses, which represent a major efficiency-limiting factor in perovskite-based LEDs (PeLEDs). Reported here is a strategy to synthesize molecular passivators with different anchoring groups for defects passivation. The passivated perovskite thin films exhibit improved optoelectronic properties as well as reduced grain size and surface roughness, thus enable highly efficient PeLEDs with an external quantum efficiency of 15.6 % using an imidazolium terminated passivator. Further demonstrated is that the in situ formation of low-dimensional perovskite phase on the surface of three-dimensional perovskite nanograins is responsible for surface defects passivation, which leads to significantly enhanced device performance. Our results provide new fundamental insights into the role of organic molecular passivators in boosting the performance of PeLEDs.

20.
J Am Chem Soc ; 142(34): 14450-14454, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786782

RESUMO

Ester-linked, crystalline, porous covalent organic frameworks (COFs) have been synthesized and structurally characterized. Transesterification reactions between ditopic 2-pyridinyl aromatic carboxylates and tri- or tetratopic phenols gave the corresponding ester-linked COFs. They crystallize as 2D structures in kgm (COF-119) and hcb (COF-120, 121, 122) topologies with surface areas of up to 2092 m2/g. Notably, crystalline COF-122 comprises edges spanning over 10 phenylene units, an aspect that had only been achieved in metal-organic frameworks. This work expands the scope of reticular chemistry to include, for the first time, crystalline ester-linked COFs related to common polyesters.


Assuntos
Ésteres/química , Poliésteres/química , Polietilenotereftalatos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA